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A B S T R A C T

The oral microbiota plays an important role in the development of various diseases, whereas its association

with gestational diabetes mellitus (GDM) remains largely unclear. The aim of this study is to identify bio-

markers from the oral microbiota of GDM patients by analyzing the microbiome of the saliva and dental

plaque samples of 111 pregnant women. We find that the microbiota of both types of oral samples in GDM

patients exhibits differences and significantly varies from that of patients with periodontitis or dental caries.

Using bacterial biomarkers from the oral microbiota, GDM classification models based on support vector

machine and random forest algorithms are constructed. The area under curve (AUC) value of the classifi-

cation model constructed by combination of Lautropia and Neisseria in dental plaque and Streptococcus in

saliva reaches 0.83, and the value achieves a maximum value of 0.89 by adding clinical features. These

findings suggest that certain bacteria in either saliva or dental plaque can effectively distinguish women with

GDM from healthy pregnant women, which provides evidence of oral microbiome as an informative source

for developing noninvasive biomarkers of GDM.

Copyright © 2021, The Authors. Institute of Genetics and Developmental Biology, Chinese Academy of

Sciences, and Genetics Society of China. Published by Elsevier Limited and Science Press. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Gestational diabetes mellitus (GDM) is defined as varying degrees

of glucose intolerance first found or occurring during pregnancy

(Weinert, 2010). GDM is one of the most common maternal compli-

cations in middle and late pregnancy. Approximately 5.2e8.8% of

pregnant women worldwide suffer from GDM each year (Cheung and

Byth, 2003). In some countries and regions, the incidence of this

disease is greater than 20%, and the incidence is increasing annually

(Damm and Mathiesen, 2015). GDM increases the risk of long-term

complications, including obesity, impaired glucose metabolism,

and cardiovascular disease, in both mothers and infants (Buchanan

et al., 2012; Damm et al., 2016).
jzhp@126.com (H. Zhang).
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The symbiotic microbiota is an important part of the human body

(Kinross et al., 2011; Lloyd-Price et al., 2016). Although some studies

have found that GDM does not obviously change the microbial

community (Hasan et al., 2018), more studies have shown that the

microbiota is significantly different between GDM patients and

normal pregnant women (Acuna et al., 2011; Crusell et al., 2018). In

the placental microbiome of GDM patients, the proportion of Pro-

teobacteria is increased, while Bacteroidetes and Firmicutes are

decreased (Zheng et al., 2017). In a recent study, there were also

significant differences in the oral microbiota between GDM patients

and normal pregnant women in the third trimester of pregnancy and

even nine months after delivery (Crusell et al., 2020).

Using microbes as biomarkers for disease prediction has become

a promising strategy (Wang et al., 2019). Several studies have found

that using bacteria for disease diagnosis has great potential (Martinez

et al., 2017). For example, using intestinal bacteria to develop bio-

markers of systemic diseases, 16 kinds of bacteria were screened

from the intestinal microbiota of colorectal cancer patients that could
logy, Chinese Academy of Sciences, and Genetics Society of China. Published by

ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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accurately distinguish colorectal cancer patients from normal people

with an accuracy of 84% (Thomas et al., 2019). Coincidentally, the

accuracy of 15 microbial-related gene markers in the diagnosis of

liver cancer can reach 83.6% (Qin et al., 2014). In the exploration of

using oral microbes as markers, a dental caries prediction model was

established according to the dynamic changes in oral microbes

during the occurrence and development of diseases (Teng et al.,

2015). Another study using oral microbes to predict periodontitis

found that oral microbial prediction could distinguish 95% of healthy

people from patients, showing a good ability to predict and diagnose

diseases (Huang et al., 2014). Additionally, some studies analyzed

the relationship between the oral microbiota and pancreatic diseases

and constructed a prediction model for pancreatic cancer using

specific microbial species (Farrell et al., 2012).

In our previous study, by comparing the microbial composition of

the vagina, intestinal tract, and oral cavity between normal pregnant

women and GDM patients, we found that the microbiota in GDM

patients was distinct (Wang et al., 2018). In particular, the maximum

change occurred in the saliva, which reflects the feasibility of

selecting oral microbes as biomarkers for GDM detection. However,

many studies have shown that there is some relationship between

GDM and periodontitis (Belstrom et al., 2016; Graziani et al., 2018). It

has been found that the incidence of GDM is increased in patients

with periodontitis (Belstrom et al., 2016). In addition, GDM and

periodontitis have the characteristics of accumulative dental plaque,

decreased red blood cell count, and increased inflammation

(Seraphim et al., 2016). Periodontal infection may increase the risk of

GDM by affecting endocrine metabolism and blood glucose control

(Gumus et al., 2015), but whether the links between these two dis-

eases are related to microorganisms is unknown. It is also not clear

whether the microbial changes caused by oral diseases or other

factors (e.g., diet or use of antibiotics) will affect the accuracy of the

disease categorization model.

This study intends to analyze the oral microbiome data of saliva

and dental plaque from GDM patients and normal pregnant women

and explore the possible relationships between GDM and two major

oral diseases, dental caries and chronic periodontitis. On this basis,

the study will identify suitable microbial markers from the oral

microbiota to construct GDM classification models, in addition to

developing a simple and noninvasive technique for auxiliary diag-

nosis and daily follow-up of GDM.

Results

Changes in the oral microbiome in patients with GDM

We enrolled 111 pregnant women with good oral health, including

two groups of 44 pregnant women with GDM (GDMþ) and 67 without

GDM (GDM�). The general information, medications, disease history,

dietary habits, and biochemical indexes are shown in supplementary

material (Fig. S1). The clinical backgrounds of the two groups were

roughly similar, except for blood glucose levels. In total, 105 saliva and

51 dental plaque samples were acquired, of which 45 saliva and

dental plaque samples were paired, with each pair collected from the

same individual (Fig. S2A). For each sample, the V3eV4 regions of the

16S rRNA gene were sequenced. Gene sequencing totally yielded

~16 million PE reads (2 � 250 bp), with an average of ~108,305 reads

per sample (Fig. S2B). Each pair of reads was merged into one

sequence by overlaps. Most of the sequences were 400e450 bp in

length (Fig. S2C). According to the rarefaction curve (Fig. S3A) and

Good’s coverage (Fig. S3B), the number of sequences can well

represent the microbial diversity of each community.

To investigate whether hyperglycemia that develops during preg-

nancy is accompanied by extensive changes in the oral microbiota, we

explored the microbial communities of saliva and dental plaque of
33
pregnant women who were diagnosed with GDM. We found that both

saliva anddental plaque samples of theGDMþ groupwere divided into

different clusters from those of the GDM� group (Fig. 1A), although

there was no significant difference in a-diversity (Fig. S4AeS4D). In

saliva, the Bray-Curtis (BC) intragroup distances of the GDMþ group

were significantly smaller than both the intragroup GDM� and inter-

group GDMþ vs. GDM� distances (P < 0.001, Mann-Whitney test). In

dental plaque, the differences in BC distances were not as obvious as

those in saliva (Fig. 1B). These results suggest that pregnant women

withGDMhave adistinct oralmicrobial community that is different from

that of healthy women, and microbial variations in the oral cavity in

GDMþ women showed obvious sample-type specificity.

Difference in the oral microbiome between patients with GDM

and major oral diseases

To investigate the possible relationships between GDM and

periodontitis, we compared the GDM-associated microbiome iden-

tified in our study with a downloaded dataset of the periodontal

microbiome dataset. Another major oral disease, dental caries,

served as a control.

The BC distances of the oral microbiome between patients with

GDM and subjects with periodontal health (PH) or disease (PD) were

first calculated. The community distances between subjects with PH

and GDMþ or GDM�were significantly smaller than those of PD (P <
0.0001, Mann-Whitney test), regardless of the use of saliva or dental

plaque (Fig. 2A and 2B). However, when bacterial taxa in the oral

microbiome were compared among PH, PD, GDMþ and GDM�
groups, we did not find that patients with PD shared more bacterial

genera with pregnant women than individuals with PH, regardless of

whether the women had GDM (Fig. 2C and 2D). There was also no

significant difference in the number of shared bacteria in the oral

cavity when pregnant women with GDM or without GDM were

compared with subjects with no caries (NC), mild caries (LC), mod-

erate caries (MC), and severe caries (HC) (Fig. S5AeS5D). The saliva

and dental plaque microbiota of both the GDMþ and GDM� groups

showed larger BC distances to the dental caries group than to the NC

group (Fig. S5E). These results indicate that the oral microbiome of

GDM patients was more similar to that of individuals with healthy

periodontal status but different from patients with periodontitis in

regard to the community structure. Themicrobial variations in the oral

cavities of pregnant womenwith GDMmay not be equivalent to those

of patients with periodontitis, and there should be little relationship in

the oral microbial shifts between the GDM and dental caries groups.

To further explore the relationships between GDM and oral dis-

eases as well as to evaluate whether bacteria-based GDM detection

would be affected by the microbial changes caused by major oral

diseases, we performed odds ratio analysis and identified the dif-

ferential genera from pregnant women with and without GDM. Sig-

nificant differences in genera such as Lautropia, Neisseria,

Streptococcus, and Veillonella were found between the GDMþ and

GDM� groups in both saliva and dental plaque samples (Fig. S6A

and S6B). Notably, Streptococcus and Veillonella were also

depleted in patients with periodontitis (Fig. S6C), indicating that the

possible relationship between GDM and periodontitis may be related

to the decreased abundance of these two genera. There was no

significant variation in these four bacteria in individuals with dental

caries (Fig. S6DeS6F), indicating that there was little relationship

between GDM and dental caries in regard to the change in the mi-

crobial community.

Classification model of GDM based on the SVM algorithm

To identify specific microbial biomarkers that can be used to

discriminate GDM, the differential genera between pregnant women
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Fig. 1. Oral microbial variations in pregnant women with GDM. A: PCoA analysis of saliva (sal_) and dental plaque (pla_) in the GDMþ and GDM� groups. B: Bacterial community

dissimilarities between the saliva and plaque samples of the GDMþ and GDM� groups. Bray-Curtis distances were independently calculated for intragroup GDMþ and GDM� and

intergroup GDM þ vs. GDM�. Statistical significance was determined by the Mann-Whitney test. ***, P < 0.001.

. . . . . . . .

Fig. 2. Comparison of the oral microbiota between periodontitis and GDM. A and B: Bray-Curtis distances of the oral microbiota between the periodontitis, periodontal health, GDMþ
and GDM� groups in saliva (A) or in plaque (B). Statistical significance is determined by the Mann-Whitney test. *, P < 0.05; ****, P < 0.0001. C and D: The number of shared bacterial

genera between the periodontitis, periodontal health, GDMþ and GDM� groups in saliva (C) or in dental plaque (D).
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with GDM and those without GDM were further investigated. We

compared the two groups by linear discriminant analysis effect size

(LEfSe) analysis, with the threshold value of LDA 3.0 (Fig. S7A and

S7B). For saliva, Leptotrichiaceae, Lautropia, Neisseria, Neisser-

iales, and four other bacterial taxa were significantly enriched in the

GDMþ group, while Selenomonas, Leptotrichia, F16, and three other
34
taxa were depleted (Fig. 3A). Regarding plaque, significant enrich-

ment was shown in the abundance of Lautropia, Neisseria, and

Neisseriales, while the microbiota was depleted of bacteria such as

Streptococcus and Veillonella in the GDMþ group (Fig. 3B). Lautropia

and Neisseria were the common characteristic bacteria in both saliva

and dental plaque.



X. Li, J. Zheng, X. Ma et al. Journal of Genetics and Genomics 48 (2021) 32e39
According to the results of both odds ratios and LEfSe (Figs. S6

and S7), we found that the abundances of the genera Lautropia,

Neisseria, Streptococcus, and Veillonella were significantly different

between the two sample types in the GDMþ and GDM� groups, so

these genera were used to construct classification models based on

the support vector machine (SVM) algorithm. First, to find the optimal

combination of microbial biomarkers in addition to optimizing the

efficiency of GDM identification, we performed orthogonal experi-

ments using paired samples of saliva and dental plaque (Fig. 4A).

Using Lautropia and Neisseria of dental plaque and Streptococcus of

saliva microbiota as bacterial features, the model achieved the

optimal area under curve (AUC) value of 0.84 (95% confidence in-

terval [CI]: 0.81e0.87). In another two combinations, the AUC value

using Streptococcus and Veillonella for the two sample types was

0.78 (95% CI: 0.75e0.81), while the value using only Streptococcus

for the two sample types also reached 0.75 (95% CI: 0.71e0.78).

Subsequently, by performing 1,000 iterations (Fig. 4B), the AUC value

of the combination of Lautropia and Neisseria and saliva Strepto-

coccus from dental plaque was as high as 0.83 (95% CI: 0.82e0.84).

Even if only Streptococcus was used in the two sample types, an

AUC value of 0.74 (95% CI: 0.73e0.75) was obtained.

Then, we combined bacterial and several clinical features, such

as weight gain during pregnancy, to construct models. Although

there was a slight improvement (0.76) when using the single bacteria

Streptococcus, the maximum AUC values (0.82) exhibited no

obvious increase (Fig. 4C). Considering that saliva sampling is more

convenient, rapid, safe, and noninvasive, we employed 105 saliva

samples to develop classification models (Fig. S2A). In the SVM

classification model of GDM, the AUC of Streptococcus and Veillo-

nella was 0.76 (95% CI: 0.75e0.76) (Fig. S8A and S8B).

GDM classification using the RF algorithm or only salivary

bacteria

To provide more choices, a classifier based on the random forest

(RF) algorithm was constructed to distinguish GDM, first using paired

dental plaque and saliva samples. The recursive feature elimination

method was used to rank the importance of all the features, and the

top 20 features and their abundance information are shown (Figs. 5A

and S9). We then selected different features to calculate the AUC of

the model (Fig. 5B). When using seven or three genera to build the

model, the model had the best performance, and the AUC values
Fig. 3. Bacterial features most likely explain differences between GDMþ and GDM�. Cladogra

(A) and dental plaque (B). Color indicates the group in which a differentially abundant taxon i

35
were 0.82 (95% CI: 0.74e0.90) and 0.81 (95% CI: 0.71e0.91),

respectively (Fig. 5B and 5C). And, we found that the clinical feature

of weight gain during pregnancy had the highest importance as the

features of GDM classification combined with bacteria (Fig. 5B), the

AUC reached 0.89 (95% CI: 0.83e0.95) (Fig. 5D). Furthermore, we

found that using Atopobium, Veillonella, Bulleidia, Streptococcus,

Kingella, and Lautropia to build the model resulted in the best per-

formance (Fig. S8C), and the AUC was 0.79 (95% CI: 0.74e0.84)

(Fig. S8D).

Discussion

In this study, the microbiome of saliva and dental plaque was

used to analyze the oral microbiota associated with GDM and to

screen the microbiological markers that could potentially distinguish

GDM patients from healthy pregnant women. This is an attempt to

construct a classification model for GDM discrimination using mi-

crobes from saliva and dental plaque as biomarkers. This is also the

first study to reveal the relationship between GDM and major oral

diseases, including periodontitis and dental caries, by comparing the

microbial shift and to evaluate the potential impact of oral diseases

on using oral microbes as diagnostic markers.

The four bacteria with the most variation in the oral microbiota of

pregnant women with GDM were identified. Among these bacteria,

Streptococcus was positively correlated with Actinomyces

(Kolenbrander et al., 2002), while the latter participates in the

Embden-Meyerhof-Parnas pathway in which glucose is degraded

into pyruvate and further degraded to lactate, formate, and acetate

(Takahashi and Yamada, 1999). Veillonella could use lactic acid as a

carbon source and energy source (Ng and Hamilton, 1971), as well as

to regulate pH to promote the proliferation of Streptococcus

(Dzunkova et al., 2018; Kim et al., 2018). In addition, the other two

bacteria, Lautropia and Neisseria, may be related to the synthesis of

bacterial motion proteins, linoleic acid metabolism, and flavonoids

(Dzunkova et al., 2018; Kim et al., 2018). Streptococcus, Veillonella,

and Neisseria in dental plaque and saliva are positively correlated

with glycolysis, fructose metabolism, and alanine metabolism but

negatively correlated with arginine metabolism (Koopman et al.,

2015). This knowledge suggests that these four bacteria have com-

plex interactions and are closely related to glucose metabolism, so

they may be used to indicate the occurrence and development of

GDM as a metabolic disease.
m of bacterial biomarkers down to the genus level identified by LDA using LEfSe in saliva

s enriched (red: GDMþ, green: GDM�).



Fig. 4. SVM classification model of GDM based on oral microbes. A: The orthogonal results of four genera in saliva and plaque (n ¼ 45). B: The ROC curve of SVM classification models

using the genus abundance in paired saliva and dental plaque samples (n ¼ 45). C: The ROC curve of SVM classification models using oral bacteria and weight gain during pregnancy.

pla_ represents bacteria from dental plaque, and sal_ represents bacteria from saliva.
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Previous studies have shown that the symbiotic microbiota in

the human body is a global hot topic in the contexts of promoting

the progress of disease diagnosis, assisting disease treatment,

and developing personalized medicines (Farrell et al., 2012; Teng

et al., 2015; Thomas et al., 2019). A model for predicting peri-

odontitis was constructed using oral bacteria such as Lautropia,

Streptococcus, Selenomonas, Peptostreptococcus, Oribacterium,

and Veillonellaceae (Huang et al., 2014). In a predictive model for

caries, using only eight marker Prevotella species could predict

caries with an AUC of up to 0.74, while 20 bacteria, including

Streptococcus, Veillonella and Prevotella, predict caries with an

AUC of up to 0.77 (Teng et al., 2015). Obviously, the markers

mentioned in the contexts of the above-mentioned oral diseases

were not exactly identical to the microbes used in this study for

GDM classification, which ensures the specificity of our model.

However, it should be noted that many studies have shown a link

between GDM and periodontitis (Belstrom et al., 2016; Graziani

et al., 2018), and partial overlaps in their microbial markers (viz.

Streptococcus and Veillonella) were also found in this study. This

reminds us to pay special attention to the oral status of the sub-

jects and to choose a bacterial combination that is not disturbed
36
by periodontitis as much as possible when developing a similar

method for GDM testing in the future.

Scholars around the world have been trying to develop various

noninvasive methods for GDM detection (Nassr et al., 2018). A recent

study used a machine learning approach to predict GDM using

retrospective data from 588,622pregnancies in Israel (Artzi et al.,

2020). These researchers devised a model based on nine ques-

tions that a patient could answer, which may identify low-risk women

and avoid glucose tolerance tests. Similarly, we used bacterial fea-

tures from the oral microbiota to build GDM prediction models based

on both SVM and RF algorithms. The performance of RF and SVM

was similar when using bacterial features only, but the RF model

performed better when clinical features were added. Perhaps, this

method currently costs more than the oral glucose tolerance test

(OGTT), but it is easier for pregnant women to provide saliva and

plaque samples than to participate in an OGTT. Oral samples can be

collected by doctors, nurses, or even pregnant women themselves

under guidance. It is very encouraging to see that a few bacteria

could achieve a good discrimination effect in our study, which

contributed to the design of specific bacterial probes for GDM

detection. Pregnant women can even test by themselves at home if it



Fig. 5. RF classification model for GDM based on oral microbes. A: Top 20 bacteria with the highest importance for GDM classification (n ¼ 45). B: The AUC of different combinations of

bacterial and clinical features. C: The RF classification model using bacteria from saliva and dental plaque samples (n ¼ 45). D: The RF classification model using bacteria and weight

gain during pregnancy. pla_ represents bacteria from dental plaque, and sal_ represents bacteria from saliva.
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becomes a simpler solution or a rapid-screening kit becomes

available.

Materials and methods

Subject recruitment

The study was approved by the Ethics Committee of Wenzhou

People’s Hospital. Pregnant women were recruited at Wenzhou

People’s Hospital. Informed consent was obtained from all partici-

pants. All the pregnant women were of Han ethnicity and permanent

residents of Wenzhou. All pregnant women were non-vegetarian and

had no history of smoking, alcohol consumption, or any other sys-

temic, metabolic or oral diseases, especially periodontitis and dental

caries (Fig. S1).

Based on the diagnostic criteria recommended by the Interna-

tional Association of the Diabetes and Pregnancy Study Groups

(IADPSG) in 2011, pregnant women with GDM (GDMþ) were diag-

nosed by specialized doctors according to the results of the

OGTT and were recruited as a case group. For women without GDM

(GDM�), plasma glucose concentrations were lower than the

threshold values of 5.1, 10.0 and 8.5 mmol/L before and 1 h and 2 h

after drinking a 75 g glucose solution, respectively. Any womanwith a

blood glucose level equal to or greater than the threshold values was

diagnosed as GDMþ.
37
Sample collection

Saliva and dental plaque samples were collected from third

trimester pregnant women according to the sampling methods

described in our previous study (Wang et al., 2013). The whole

mouths of all subjects were examined, and samples were collected

by professional doctors. Partial saliva and dental plaque were paired

samples that were collected from the same individual. Prior to

sample collection, all subjects were instructed to avoid eating and

brushing their teeth for 2 h. Briefly, ~2 mL saliva was collected from

each pregnant womanwith a sterile tube and stored at�80�C. Dental
plaque was scraped from the tooth surface, resuspended into a

centrifugal tube, and stored at �80�C until total DNA extraction for

later sequencing.
DNA extraction

In a strictly controlled, separate and sterile workplace,

approximately 0.2 mL saliva and 50 mL PBS containing the plaque

sample were mixed with Qiagen’s AL buffer by pulse vortexing for

30 s (Qiagen, Valencia, CA). Total DNA was extracted from the

suspension of each sample using a QIAamp DNA Mini Kit (Qiagen,

Valencia, CA). Isolated DNA was eluted in 50 mL distilled water.

The DNA quality and concentration of all samples were measured
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by agarose gel electrophoresis and a Qubit 3.0 fluorometer (Life

Technologies, Waltham, MA) before downstream processing.

High-throughput sequencing

For each sample, variable regions 3 and 4 (V3eV4) of the 16S

rRNA gene were amplified using 341F and 805R primers. Purified

positive amplicons with different index sequences were pooled in

equimolar amounts. Amplicon length and integrity of the libraries

were assessed by a Fragment Analyzer (Advanced Analytical Tech-

nologies) before paired-end (PE) sequencing (2 � 125 bp) on a

HiSeq2500 platform (Illumina, San Diego, CA). The sequencing data

were deposited under the accession number CRA002189 in the

Genome Sequence Archive (https://bigd.big.ac.cn/gsa/).

16S rRNA sequence analysis

Raw sequencing reads of the 16S rRNA gene sequences were

quality filtered and analyzed using QIIME V.1.8.0.12. The operational

taxonomic units (OTUs) were classified taxonomically using the

Greengenes 16S rRNA gene reference database. Two microbial

classification datasets of adults (nonpregnant), including 28 patients

with periodontitis (PD), 22 subjects with good periodontal health (PH),

62 patients with high caries (HC), 37 patients with middle caries (MC),

32 patients with low caries (LC), and 29 subjects with no caries (NC)

were retrieved for comparison (Camelo-Castillo et al., 2015; Xiao

et al., 2016).

Analysis of microbial community composition

The taxonomic composition of microbial communities was

visualized using Calypso (Zakrzewski et al., 2017). Community

clustering was measured by unweighted UniFrac distance based on

the normalized taxonomy table. Bray-Curtis dissimilarity between

different sample types was calculated using the R package ecodist.

The difference in alpha diversity between groups was statistically

analyzed by the Mann-Whitney test (P < 0.05). LEfSe and odds ratio

analysis were used to identify the characteristic genera in the

GDMþ and GDM� groups, and a score of log linear discriminant

analysis (LDA) > 3.0 or an odds ratio with P < 0.05 was considered

to indicate a differential signature that better discriminated between

groups.

Biomarker screening and classification model construction

The genera whose abundance was � 0.1% in each sample were

retained, and low-abundance bacteria were excluded from the

following analysis. The SVM algorithm and ROC calculation were

performed by the e1071 and ROCR packages in R, respectively.

Based on the genus abundance in saliva-plaque paired samples

(n ¼ 45) and only saliva samples (n ¼ 105), cross-validation with

1,000 random permutations was executed to evaluate the perfor-

mance of these models. RF models were also trained using bacterial

taxonomy profiles of the oral microbiota to differentiate the disease

status of GDM. The recursive feature elimination method was used to

sort the importance of all bacterial and clinical features and to draw

the ROC curve. Then, five-fold cross validation with 1,000 iterations

was used to evaluate the performance of these models.

Data availability

The sequencing data were deposited under the accession num-

ber CRA002189 in the Genome Sequence Archive (https://bigd.big.

ac.cn/gsa/).
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