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Accurate quantification of circular RNAs identifies
extensive circular isoform switching events
Jinyang Zhang 1,2, Shuai Chen1, Jingwen Yang1 & Fangqing Zhao1,2,3*

Detection and quantification of circular RNAs (circRNAs) face several significant challenges,

including high false discovery rate, uneven rRNA depletion and RNase R treatment efficiency,

and underestimation of back-spliced junction reads. Here, we propose a novel algorithm,

CIRIquant, for accurate circRNA quantification and differential expression analysis. By con-

structing pseudo-circular reference for re-alignment of RNA-seq reads and employing

sophisticated statistical models to correct RNase R treatment biases, CIRIquant can provide

more accurate expression values for circRNAs with significantly reduced false discovery rate.

We further develop a one-stop differential expression analysis pipeline implementing two

independent measures, which helps unveil the regulation of competitive splicing between

circRNAs and their linear counterparts. We apply CIRIquant to RNA-seq datasets of hepa-

tocellular carcinoma, and characterize two important groups of linear-circular switching and

circular transcript usage switching events, which demonstrate the promising ability to explore

extensive transcriptomic changes in liver tumorigenesis.
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C ircular RNA (circRNA) is a large class of RNA molecules
that contain a covalent circular structure formed by non-
canonical 3′ to 5′ end-joining event called back-splicing.

Previous studies have shown that circRNAs are widely present
and some are conserved in eukaryotic organisms, and have a
relative low abundance compared with canonical linear mRNA
transcripts1. Although the exact function of most circRNAs is still
ambiguous, studies have shown that circRNAs may function as
sponges to sequester miRNAs or RNA binding proteins
(RBPs)2–4. More recently, several studies found that internal
ribosome entry sites or N6-methyladenosine can promote the
translation of circRNAs, which results in the biogenesis of
circRNA-derived proteins5–7. Thus, circRNAs have great poten-
tials to play important roles in cellular metabolic process, and the
characterization and quantification of circRNAs from high-
throughput RNA-seq data has become an emerging problem in
circRNA studies.

A number of computational methods have been developed for
characterizing circRNAs8. Most of these methods employ align-
ment based strategies to recognize back-spliced junction (BSJ)
reads from circRNAs, and have limited sensitivity and notable
false-positive rate in circRNA identification9. Recently, a model-
based strategy is employed by Sailfish-cir10, which uses a quasi-
mapping method to acquire direct estimation of circular tran-
script expression. This statistical model depends on the unique
sequence between circular and linear transcripts, which limits its
ability on quantifying exonic circRNAs. Moreover, the ratio of
BSJ reads to canonical linear reads at the junction, which repre-
sents the splicing preference in precursor mRNAs, is also an
important factor in circRNA analysis. However, among all cur-
rently available circRNA detection tools, only CIRI211,12 can
output the junction ratio directly. DCC13 and Sailfish-cir estimate
the expression values of both linear and circular transcripts,
which can be used to calculate circRNA’s junction ratio. Hence, a
reliable computational tool is urgently needed for accurate
quantification of circRNAs and their parental linear transcripts.

Differential expression analyses of circRNAs in different sam-
ples is a routine analysis in circRNA studies. Currently, simple
statistical tests (e.g., t-test) or differential expression analysis
pipelines designed for linear RNA transcripts (e.g., DESeq214) are
often used to evaluate the significance of differentially expressed
circRNAs. Since most of circRNAs are expressed at extremely low
levels, RNase R treatment are usually performed to enrich cir-
cRNAs. For studies using RiboMinus/RNase R-treated RNA-seq
libraries, the variation of enrichment coefficient in the RNase R
treatment step may result in biased estimation of circRNA
expression levels. In addition, analysis of experimental replicates
has shown the poor reproducibility of circRNA identification15,
which further indicates that accurate characterization and quan-
tification of circular transcripts is crucial in circRNA studies.

To overcome these limitations, we propose CIRIquant for
accurate quantification of both circRNAs and their parental
transcripts and filtration of false positives BSJ reads. CIRIquant
can employ currently widely used tools (e.g., CIRI211,12, CIR-
Cexplorer216, find_circ2, etc.) for circRNA identification, then
generated pseudo-reference sequences for the identified circRNA
transcripts to re-align putative BSJ reads. Using both alignment
results of reads against the reference genome and pseudo cir-
cRNA transcripts, CIRIquant not only achieves more accurate
and sensitive identification of BSJ reads, but also enables reliable
quantification of junction ratio for circRNAs. Moreover, CIRI-
quant provides a convenient function for one-stop circRNA
differential expression analysis. We apply CIRIquant to survey
circRNA expression profiles between hepatocellular carcinoma
(HCC) tumor samples and their adjacent normal tissues, which
unveil extensive transcriptomic changes in liver tumorigenesis.

Additionally, we profile the switching events in circRNA junction
ratio and circular transcript usage, and characterize these two
groups of circRNAs with potential biological functions. We
believe that CIRIquant, which provides an accurate and efficient
quantification approach to characterize circRNAs and perform
differential expression analysis after correcting experimental and
computational biases, will greatly improve our understanding of
circRNA diversities and functions.

Results
Challenges in quantifying the expression of circRNAs. To rig-
orously evaluate the challenges in current quantification of cir-
cRNA expression, we collected 63 transcriptomic samples from
six previous studies16–22, including both RiboMinus and Ribo-
Minus/RNase R RNA-seq libraries of four species (human,
mouse, fly and roundworm, Supplementary Table 1). All these
RNA-seq datasets were aligned to their reference genomes and
the ribosomal RNA (rRNA) sequences using HISAT223 to assess
the mapping rate and rRNA sequence fraction. As shown in
Fig. 1a, RNA-seq datasets from four species showed an extra-
ordinarily high variance in the efficiency of rRNA sequence
depletion, which is largely due to the limited specificity and
efficiency of current RiboMinus transcriptome isolation kit. For
each sample, the raw reads were further aligned to the reference
genome using the BWA-MEM algorithm24, and then subjected to
CIRI2 for circRNA detection and quantification. We chose CPM
(counts per million mapped reads) to represent circRNA
expression levels to remove the biases derived from different
library insert size and sequencing depth. For 34 pairs of Ribo-
Minus and RiboMinus/RNase R samples, the overall number of
detected circRNAs ranged from several thousand to over 30
thousand, in which most of circRNAs detected in the RiboMinus
samples can be validated in the RiboMinus/RNase R samples
(Fig. 1b). Although the total number of identified circRNAs
increased after RNase R enrichment, over 50–80% highly
expressed circRNAs could be detected in both RiboMinus and
RiboMinus/RNase R samples. Considering that RNase R treat-
ment is widely used for circRNA enrichment, we compared
expression levels of both gene and circRNA in RNase R-treated
and untreated samples to investigate whether RNase R treatment
can introduce bias in transcript quantification. As shown in
Fig. 1b (right), gene expression levels decreased over 2-fold, which
is in concordance with the degradation effect of linear RNAs in
RNase R treatment. However, the relative expression value of
circRNAs also showed a certain level of reduction. Considering
that the RNase R treatment is expected to increase the saturation
level of circRNA detection, the more circRNAs are identified, the
more circular reads and the lower the relative expression value for
each specific circRNA.

To further investigate the effect of RNase R treatment on
circRNA quantification, we divided the detected circRNAs into
two groups, highly expressed circRNAs and lowly expressed
circRNAs, according to the ranking of their expression values.
Then, we calculated the proportion of reads from the two groups
of circRNAs after RNase R treatment. As shown in Fig. 1c and
Supplementary Fig. 1, we observed an increased proportion of BSJ
reads for highly expressed circRNAs after RNase R treatment,
indicating that highly expressed circRNAs tended to be enriched
in RiboMinus/RNase R-treated data. In order to assess the
efficiency of RNase R treatment, we calculated the enrichment
coefficient for circRNAs in different RNA-seq datasets. Surpris-
ingly, the enrichment coefficient exhibited distinct difference
among samples from different species or even within the same
species (Fig. 1d). Datasets from human samples showed the
highest effectiveness of RNase R enrichment of circRNAs, with a
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mean enrichment coefficient of 0.95. In contrast, the peak of
RNase R coefficient in RNA-seq samples of other species is
generally lower than 0.9. To further investigate the random effect
in RNase R treatment, we compared the enrichment coefficient of
circRNAs in experimental replicates. The enrichment effect
exhibited a high correlation in different experimental replicates
in general, but when focusing on a certain circRNA, it showed a
lower consistency (Fig. 1e). Taken together, these findings show
that the quantification of circRNAs is affected by their
abundance, rRNA removal rate, and RNase R treatment
efficiency, which requires more efficient algorithms to tackle
these problems.

CIRIquant—accurate quantification of circRNAs. Current
computational approaches on circRNA identification are mainly
based on the detection of BSJ reads. Most of these methods (e.g.,

CIRCexplorer2, DCC, find_circ) rely on specific RNA-seq align-
ers to detect anchor sequences or map fusion reads, and then scan
mapping results for circular transcript identification. However,
these strategies exhibited significant shortcomings in quantifying
circRNA expression from RNA-seq data, as the RNA-seq aligners
they used are not designed for mapping reads with a BSJ signal,
especially for those spanning multiple junction sites8,25. Other
tools either use BWA-MEM to obtain split mapping position of
junction reads11,12, or employ a model-based statistical algorithm
to quantify circRNA expression levels10, of which the sensitivity
and accuracy for circRNA detection and quantification are
dependent on the threshold and model selection. Here, we pro-
posed a new and efficient approach (Fig. 2a) to accurately identify
and quantify both linear and circular transcripts across BSJ from
transcriptomic data. First, RNA-seq reads were aligned to the
reference genome using HISAT2, and CIRI212 or other circRNA
detection tools were applied to identify putative circRNAs. To
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Fig. 1 Challenges in quantifying the expression of circular RNAs. a The fraction of ribosomal RNA reads in 63 RNA-seq datasets from four different
species. x- and y-axis represent the fraction of reads mapped to rRNA sequences and the reference genome in all sequencing reads, respectively. b RNase R
treatment affects circRNA numbers and their expression levels. Left: total number of detected circRNAs in RiboMinus and RiboMinus/RNase R-treated
samples. Middle: percentage of highly expressed circRNAs detected in both RiboMinus and RiboMinus/RNase R samples. Right: Boxplot shows the change
of circRNA and mRNA expression levels after RNase R treatment. Expression levels of circRNAs were measured as the number of BSJ reads of each
circRNA divided by the total number of BSJ reads. Gene expression levels were measured by TPM (transcript per million). c Proportion of highly (top 50%)
and lowly (bottom 50%) expressed circRNAs reads in RiboMinus and RiboMinus/RNase R data. RNase R treatment tends to enrich highly expressed
circRNAs but reduce lowly expressed circRNAs. d Density distribution of RNase R enrichment coefficient for circRNAs in four species. The vertical dashed
line at x= 0 indicates a null enrichment effect of circRNAs. e Replication of RNase R enrichment coefficient in two experimental replicates of eight RNA-
seq datasets. X- and y-axis represent the log transformed (1−x) of RNase R treatment coefficient.
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accurately quantify the expression level of circRNAs and filter
false-positive BSJs, we generated a pseudo circRNA reference
sequence by concatenating two full-length sequence of the BSJ
region. Then, candidate circular reads were re-aligned against this
pseudo reference, and BSJ reads were determined if they could be
linearly and completely aligned to the BSJ region. Furthermore,
by combining the alignment results against the reference genome
and the pseudo-reference sequences, we could determine the
junction ratio for each circRNA by calculating the percentage of
circular splice junction reads across the BSJ. Finally, canonical
RNA-seq data analysis pipeline23,26 was used to obtain transcript-
level expression information27.

For RNase R-treated RNA-seq data, the circRNA BSJ
expression values cannot be directly used for comparative analysis
due to the uneven efficiency of RNase R treatment in different
studies (Fig. 1d). Hence, we implemented a Gaussian mixture
model to fit its efficiency distribution (Fig. 2b), and then used the
fitted model as posterior distribution for RNase R coefficient
correction. For differential expression analysis of circRNA, we
proposed two strategies to evaluate both differential expression
(DE) and differential splicing (DS) of circRNAs in case and
control samples. When no biological replicate is available, we
calculated DE and DS score for circRNAs using generalized fold
change, utilizing both fold change and variance information,
which provide more meaningful rankings. With biological
replicate samples, statistical test was performed to evaluate the

significance of change in circRNA expression values and junction
ratios. To infer the true difference in circRNA expression between
samples, we implemented trimmed mean of logarithm fold
changes (TMM) normalization using gene expression data to
remove systematic batch effects28 (Fig. 2c). Consequently,
generalized linear models in edgeR29 is applied to determine
whether a circRNA is significantly differentially expressed across
experimental conditions and exact rate-ratio test is used as
significance test for difference in circRNA junction ratio.

Simulation studies. To evaluate the performance of existing
algorithms on circRNA quantification, we used CIRI-simulator12

to generate simulated datasets for performance comparison. We
firstly simulated RNA-seq reads with different read lengths ran-
ging from 100 bp to 250 bp, and then applied CIRI2, CIRCex-
plorer216, DCC13, find_circ2 and KNIFE30 to assess their
sensitivities on circRNA detection. For most tools except CIRI2,
the detection sensitivity was reduced with the increase of
sequencing read length. Therefore, to get better performance for
all tools, we chose simulated data with paired-end 100 bp reads
and circRNAs under empirical expression distribution. We
applied each of the five methods to detect circRNAs from the
simulated data, and then used the predicted circRNA coordinates
as input for CIRIquant to filter false positives and quantify cir-
cRNA expression. Next, we calculated the Pearson correlation
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coefficient between the number of predicted BSJ reads and the
number of simulated BSJ reads for identified circRNAs. As shown
in Fig. 3a, among these methods, CIRI2 achieved the best per-
formance (PCC= 0.97), while the correlation coefficient of the
other tools ranged from 0.87 (CIRCexplorer2) to 0.92 (KNIFE).
After the adjustment of BSJ reads by CIRIquant, the correlation
coefficient for all the five methods improved remarkably (Sup-
plementary Fig. 2). It should be noted that besides more accurate
quantification, CIRIquant exhibited the lowest false discovery rate
(FDR) for circRNA identification, which should be attributed to
its re-alignment of putative BSJ reads against the pseudo-
reference sequence. Sailfish-cir10 implemented a similar strategy
to quantify circRNA expression by transforming circular tran-
scripts into pseudo-linear transcript and then employed Sailfish31

to estimate the expression values of both circular and linear
transcripts. Considering that Sailfish-cir only estimated circRNA
expression levels measured as transcripts per million (TPM)
without counting BSJ reads count, we calculated the Pearson
correlation coefficient between the simulated coverage and the
predicted TPM by Sailfish-cir or BSJ reads number by CIRIquant.
As shown in Fig. 3b, CIRIquant (PCC= 0.947) achieved much
better performance than Sailfish-cir (PCC= 0.618) on the
simulated dataset. A major reason is that Sailfish-cir relied on the
unique sequence in circular transcripts to distinguish them from
linear transcripts, which is only applicable to circRNAs with low
overlap with their parental mRNA transcripts. Additionally, we
obtained the qRT-PCR data from a previous study30 to assess the
consistency of predicted and experimental results. As shown in
Supplementary Fig. 3, CIRIquant clearly outperformed all other
tools (correlation coefficient r=−0.79, p= 3.8 × 10−18). Taken
together, these results demonstrated that CIRIquant can achieve

better performance in circRNA quantification on both simulation
and experimentally validated datasets.

RNase R treatment correction. The inconsistency of RNase R
digestion efficiency in circRNA library preparation for different
samples may lead to biased circRNA expression quantification.
To evaluate the performance of RNase R efficiency correction
in CIRIquant, we applied this method in three RNA-seq datasets
of human cell lines generated in previous studies17,18,22 and
each dataset consists of both RiboMinus and RiboMinus/RNase
R libraries. We implemented Gaussian mixture model to fit
the distribution of RNase R digestion coefficient, and then
used its posterior distribution to estimate the original read
counts for each circRNA before RNase R treatment. Subse-
quently, we calculated the deviation ratio between estimated CPM
before and after RNase R correction. As shown in Fig. 3c, the
distribution of deviation ratio in corrected CPM exhibited much
less dispersion level than those without RNase R efficiency cor-
rection. In RiboMinus/RNase R data, the expression levels of
circRNAs tended to be overestimated due to the enrichment of
circRNAs by RNase R, and the correction of RNase R treatment
efficiency could greatly minimize the bias between RNase R-
treated and untreated samples. To experimentally validate the
reliability of RNase R correction, 20 quantitative real-time RT-
PCR experiments were performed on five randomly selected
circRNAs in four RiboMinus libraries (Supplementary Fig. 4).
The root-mean-squared error (RMSE) was used to measure
the deviation of qRT-PCR results and the expression level of
circRNAs predicted in the RiboMinus/RNase R libraries. After
RNase R correction, CIRIquant significantly reduced the bias
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induced by RNase R treatment (RMSE= 0.006) and achieved
much better performance than all the other tools (Supplementary
Fig. 4).

To further investigate the effect of RNase R treatment on
differential expression analysis, we performed RNA interference-
mediated knockdown of TRA2B in HeLa cells, where TRA2B, an
important sequence-specific serine/arginine splicing factor, was
depleted using shRNA designed to minimize off-target effects. We
isolated total RNA before and after TRA2B knockdown, and then
divided each sample into two fractions, where ribosomal RNA
depletion and RNase R digestion were performed in one fraction
(termed as RiboMinus/RNase R) and the other fraction was only
treated by ribosomal RNA depletion (termed as RiboMinus).
52–88 million paired-end 100 bp reads were generated for these
RNA-seq libraries. Consequently, we employed CIRI2 and
CIRIquant to identify circRNAs and quantify their expression

levels, and then calculated the logarithmic fold change of
circRNA expression levels after knockdown of TRA2B for
RiboMinus and RiboMinus/RNase R libraries, respectively. We
observed that for circRNAs which can be detected in
both datasets, the log2-fold change between RiboMinus and
RiboMinus/RNase R groups showed a low correlation (Fig. 4a,
Pearson correlation coefficient= 0.21, p-value= 0.005), indicat-
ing that RNase R treatment should cause significant bias in
subsequent analysis. For instance, we observed an inconsistent
pattern of expression level change for several circRNAs after
TRA2B knockdown between RiboMinus and RiboMinus/
RNase R datasets (Supplementary Fig. 5). In the RiboMinus
dataset, the expression of circPRKD3, circZBTB46, circVAPA,
and circCHSY1 increased significantly after TRA2B knockdown,
while circATXN7 showed a decrease in expression. For the
RiboMinus/RNase R dataset, however, an opposite trend was
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red and blue, respectively. d The volcano plot of circRNAs in RiboMinus/RNase R libraries before and after CIRIquant correction. Red and blue nodes
represent up and downregulated circRNAs, respectively, with their node sizes representing DE scores. e CircRNA with relatively higher change in prior
probability distribution of the number of BSJ reads will have a more significant DE score. Red and gray lines represent posterior distribution of corrected
circRNA expression values before and after TRA2B knockdown. f Overlap of significantly differentially expressed circRNAs after and before RNase R
correction. The whole and randomly sub-sampled of 50% RiboMinus RNA data are used as control set for RNase R treatment correction in two Venn
diagrams. DE-circRNAs are divided into four categories: (I) RiboMinus-specific DE-circRNAs, (II) DE-circRNAs in both RiboMinus and RiboMinus/RNase
R-corrected groups, (III) RiboMinus/RNase R-corrected DE-circRNAs, (IV) Dropped DE-circRNAs after RNase R correction. Numbers between the two
Venn diagrams show the amount of circRNAs in type III and type IV that can be re-classified into type II when increasing the data size from 50 to 100%.
The type III DE-circRNAs are more likely to be re-classified into type II than those in type IV (p-value= 0.02, Chi-squared test), demonstrating the
reliability of RNase R correction by CIRIquant.
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observed for these five circRNAs. Such contradictory results
reflect the non-negligible randomness effect of RNase R
enrichment in circRNA studies. Therefore, correction for RNase
R treatment efficiency is essential for circRNA differential
expression analysis.

To systematically evaluate the potential bias caused by RNase R
treatment in differential expression analysis, we employed two
different strategies to process RiboMinus and RiboMinus/RNase
R datasets. Firstly, for the RiboMinus data without RNase R
treatment, CIRIquant calculated the differential expression (DE)
score using the generalized fold-change method adjusted from
GFOLD32, in which differentially expressed circRNAs were
ranked by taking into account both fold change and variance of
the posterior distribution of log2 fold change (Fig. 4c). As shown
in the volcano plot, DE score by CIRIquant showed a strong
consistency between log2 fold change and P-value in the
RiboMinus data. A DE score of zero means no significance in
expression change, and circRNAs with higher DE score indicate a
relative greater change of expression level and smaller p value
compared to those with smaller DE score. Secondly, for the
RiboMinus/RNase R data, the distribution of RNase R digestion
efficiency was estimated using circRNAs found in both
RiboMinus and RiboMinus/RNase R data. Then, a Gaussian
mixture model (GMM) was used to fit the distribution. With the
fitted model as prior distribution, the original BSJ reads count in
the RiboMinus data can be inferred from the number of BSJ reads
in the RiboMinus/RNase R data and the forward-spliced junction
(FSJ) reads in both datasets (Fig. 4b). Finally, the posterior
distribution of read counts after correction in case and control
samples were used for DE-score calculation (Fig. 4e). Compared
to DE score simply derived from the RiboMinus/RNase R data,
additional step of RNase R correction can filter out a majority of
circRNAs with relatively low fold change and P-value, which are
considered to be significantly differentially expressed before
RNase R correction (Fig. 4d). Moreover, the correction for RNase
R treatment can also affect the ranking of circRNAs with non-
zero DE score.

To further validate the reliability of this correction method, we
randomly sampled half of reads from the RiboMinus data, and
used this subset of sequences to identify circRNAs and then
compared them with the same RNase R-treated sample to
calculate DE scores. We divided the identified DE circRNAs into
four categories: (i) RiboMinus-specific DE-circRNAs (circRNAs
that were found to be differentially expressed only in the
RiboMinus dataset), (ii) DE-circRNAs in both RiboMinus and
RNase R-corrected groups, (iii) DE-circRNAs solely identified in
the RNase R-corrected group, (iv) circRNAs that were filtered out
by RNase R correction. With the increase of reads in the control
set from half of the data to all reads, we observed 37 circRNAs in
type III and 18 circRNAs in type IV that were re-classified into
type II (Fig. 4f), which indicated that after RNase R correction,
the DE-circRNAs are more reliable compared to those filtered out
by our method (p= 0.02, Chi-squared test). Collectively, these
results demonstrate that the RNase R correction implemented in
CIRIquant can efficiently filter false positives and generate more
reliable differential expression analysis.

Identification of linear-circular isoform switching events. To
determine the ratio of circRNA to its parental linear transcript,
CIRIquant takes advantage of the two-step read alignment
strategy, including canonical RNA-seq read alignment and the re-
alignment to pseudo-reference sequence. Therefore, the ratio of
BSJ reads to canonical junction reads for a given circRNA at the
junction site can be accurately determined. We applied CIRI2,
DCC and Sailfish-cir on the same simulated datasets described

above, and found that these methods varied greatly in junction
ratio estimation (Fig. 5a). Sailfish-cir and DCC tended to
underestimate junction ratio, largely due to their relatively low
sensitivity in detecting BSJ reads, which is consistent with the
simulation results (Fig. 3a). CIRI2, however, slightly over-
estimated the junction ratio for a majority of circRNAs in this
simulated data. A possible explanation is that CIRI2 used BWA-
MEM for split mapping of BSJ reads, in which the aligner is not
designed for gapped alignment of RNA-seq reads and may lead to
an underestimation of forward-spliced junction reads. As shown
in Fig. 5a, CIRIquant, which utilized the pseudo-reference
alignment strategy, achieved notably high performance in junc-
tion ratio estimation (PCC= 0.97) and outperformed all the
other approaches.

To further demonstrate the applicability of CIRIquant on
differential expression analysis, we knockdown three well-known
splicing factors (MBNL1, PTBP1, and TRA2B) in HeLa cells
using specifically designed shRNAs, and then isolated total RNA
of three knockdown samples and a control sample with mock
treatment for transcriptome sequencing. We applied CIRI2 and
CIRIquant to detect and quantify circRNAs, and then performed
differential expression analyses using both expression levels and
junction ratios (Fig. 5b). DE score of circRNAs were calculated as
previously described, to assess differential expression levels.
However, for the change of junction ratio, we used a similar
method to calculate the differential splicing (DS) score (see the
Methods section). To experimentally validate the accuracy of
circRNA junction ratio estimation by CIRIquant, 60 quantitative
real-time RT-PCR assays were performed on five randomly
selected circRNAs and their parental linear transcripts in the
control set and three knockdown libraries. For each circRNA,
outward primers were used to amplify BSJ region, while two pairs
of inward primers targeting 5’ and 3’ cirexons were designed to
determine junction ratio of these circRNAs. The junction ratio of
circRNAs obtained from qRT-PCR and CIRIquant showed a high
level of consistency (Supplementary Fig. 6), indicating the
reliability of CIRIquant on the determination of circRNA
junction ratios.

Based on differential expression analysis, we found that 162,
346 and 97 DE-circRNAs in the three knockdown samples,
respectively. Then we calculated the DS scores and found that
DS-circRNAs and DE-circRNAs showed a high concordance
(Fig. 5c). Nevertheless, we observed a certain fraction of circRNAs
that were only identified by using DS or DE score, which we
termed as DS- and DE- specific circRNAs, respectively. The
fraction of DE-specific and DS-specific circRNAs varied in the
three knockdown datasets. While PTBP1 and TRA2B knockdown
resulted in more DS-specific circRNAs, knockdown of MBNL1
only gave rise to 36 DS-specific compared to 60 DE-specific
circRNAs (Fig. 5d), which indicates that the knockdown of these
splicing factors may affect circRNA biogenesis through different
mechanisms. To investigate the influence of splicing factor
knockdown on circRNAs and alternative splicing of mRNA
transcripts, we chose the PTBP1 knockdown sample, which has
the largest number of DE and DS circRNAs, for further analysis.
Gene ontology enrichment analysis was performed on these DE-
and DS-circRNAs and differentially expressed genes by GFOLD32

(Fig. 5e). The nitric oxide and interleukin-1 related processes
were enriched in differentially expressed genes, in contrast to the
DNA repair and phosphorylation process enriched in DE&DS
circRNAs (Supplementary Table 2).

In different cell types or in response to stimuli, genes can
drastically change the relative abundance of different isoforms,
often referred to as isoform switching, which may have
substantial biological impact33. Here, we defined linear-circular
isoform switching (LC-switching) as that occurring between
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DE score and DS score in three knockdown datasets. Only circRNAs significantly changed in at least one sample are shown in the heatmap. d Overlap of
significantly changed circRNAs. x- and y-axis represent −log10(p value) from DE-analysis and rate-ratio test using junction ratio of circRNAs in two different
conditions, respectively. Downregulated p-values are assigned as negative values. DE-specific and DS-specific circRNAs are highlighted in blue and red,
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circular transcript and its parental linear transcript. A stringent
threshold was set to detect highly confident LC-switching events,
where the junction ratio should show a dramatic change in
different samples (Δ Junction ratio > 0.3) and the LC-switching
circRNAs should change from the major splicing isoform
(junction ratio > 0.5) to the minor isoform (junction ratio < 0.5),
or vice versa. As shown in Fig. 5f, we found multiple linear-
circular isoform switching events in these three knockdown
samples (58 in PTBP1, 21 in MBNL1 and 16 in TRA2B,
Supplementary Table 3 and Supplementary Fig. 7), suggesting a
competitive regulation of host gene canonical splicing and
circRNA production after the knockdown of these splicing
factors34. We downloaded public iCLIP datasets of PTBP1 and
TRA2B from CLIPdb35,36, and then detected their binding sites
from the genomic regions adjacent to (i) DE and DS circRNAs
(ii) alternatively skipped exons detected by MISO37. The average
coverage of binding sites was calculated for each base on the
flanking regions of BSJ and exon boundaries (Fig. 5g). In the
PTBP1 and TRA2B-knockdown data, we observed multiple
distinct binding peaks within back-spliced circular exons and
their flanking 3 kb regions. For PTBP1, skipped mRNA exons
showed a high peak of binding site density in 5’ exon boundary,
whereas DE- and DS-circRNAs have continuous binding sites in
both upstream and downstream intronic regions. In contrast, for
TRA2B, the DE- and DS-circRNAs enriched TRA2B binding sites
in exonic region, while no significant peak were observed for
skipped mRNA exons. For skipped mRNA exons, the binding site
preference of PTBP1 and TRA2B is consistent to previous
studies38,39. Such a significant difference in binding specificity for
circRNAs may explain how splicing factor PTBP1 and TRA2B
bind with pre-mRNA and regulate circRNA splicing. Altogether,
we proposed a novel approach to investigate linear-circular
isoform switching events in circRNA studies, which help us
understand the mechanism of circRNA biogenesis and unveil the
regulation of competitive splicing between circRNA and their
linear counterparts.

Extensive transcriptomic changes in hepatocellular carcinoma.
To systematically investigate the expression profile of circRNAs
in hepatocellular carcinoma (HCC), we applied CIRI2 and CIR-
Iquant to 40 RNA-seq datasets of normal and tumor liver samples
derived from HCC patients40 and a total number of 46,984 cir-
cRNAs were detected and quantified in these samples. We firstly
performed dimensionality reduction using mRNA expression
level, circRNA expression level and junction ratio of circRNAs.
The tumor and adjacent normal samples were clearly dis-
tinguished using all three features (Fig. 6a), indicating that like
mRNA, circRNA and junction ratio can also be served as
potential biomarkers to distinguish tumor from normal tissue
samples.

We further performed differential expression analyses using all
three features mentioned above, and then classified genes hosting
circRNAs into three categories: differentially expressed genes,
host genes of DE-circRNAs and host genes of DS-circRNAs. In
total, 1159 genes were significantly changed between normal and
tumor samples, while there were only 459 genes hosting DE-
circRNAs and 284 genes hosting DS-circRNAs (Fig. 6b). It should
be noted that there were very few overlapped genes among these
three categories, indicating that DE- and DS-circRNAs may play
different roles in the regulation of tumor development (Supple-
mentary Fig. 8). Then, we plotted the top 25 DE-circRNAs, of
which only 3 were also detected in top 25 DS-circRNAs (Fig. 6c).
Notably, several well-characterized cancer-related genes (e.g.,
ZKSCAN1, ABCB4 and CYP2C8) were found to generate

circRNAs with significant changes in tumor samples. Among
these genes, we found circZKSCAN1 and circSMARCA5 are both
downregulated in HCC tumor samples, which confirmed
previous findings41,42.

To further explore the change in circRNA expression patterns
from different aspects, we calculated the junction ratio for each
circRNA and circular transcript usage (CTU) for circRNA host
genes. For each circRNA host gene, only two major circular
transcripts were considered, and the proportion of the circRNA
with the longest junction site distance was used to determine
switching in circular transcript usage. In order to get a convincing
result, only circRNAs that expressed in more than half of samples
in both tumor and normal groups were used for detecting CTU-
switching events. As shown in Fig. 6d, most LC-switching
circRNAs showed significant decrease of junction ratio in tumor
compared to normal samples, while CTU-switching circRNAs
exhibited both up and downregulated patterns (Supplementary
Table 4). Moreover, we also observed a number of LC-switching
and CTU-switching events in two additional datasets (Alzhei-
mer’s Disease and Renal cell carcinoma), which strongly
supported our findings (Supplementary Fig. 9). Next, we
investigated the tissue specific expression pattern of all LC/
CTU-switching circRNAs, measured by the relative expression
level of circRNA in each tissue from circAtlas43 (Fig. 6e). Several
circRNAs were observed with highly conserved expression in all
tissues, suggesting that these circRNAs may play conservative
roles in certain biological process. Moreover, we noticed that hsa-
intergenic_006404, an intergenic circRNA from chromosome 5,
was also recognized as the LC-switching circRNA in the HCC
dataset. It exhibited a significant decrease in junction ratio in
tumor samples, as well as a liver-specific expression pattern
(Fig. 6f). With quantitative real-time PCR (qRT-PCR) and Sanger
sequencing, we confirmed the expression level of hsa_inter-
genic_006404 in 14 pairs of tumor and adjacent normal samples,
and also validated its BSJ sequence. As most circRNAs are derived
from genic region, we further studied the epigenetic feature at the
genomic region of hsa_intergenic_006404, and found that this
circRNA was derived from an enhancer region, and its flanking
region exhibited an enrichment of H3K27 acetylation in all 7
ENCODE cell lines44,45 (Fig. 6f), which is thought to represent
the active regulation of transcription46. Additionally, we observed
a large overlap with transcription factor CHIP-seq peaks and
DNase I hypersensitivity clusters in its BSJ region (Supplementary
Fig. 10). Altogether, as a liver-specific circRNA, hsa_inter-
genic_006404 may play an important role in the development
of HCC.

Among the CTU-switching circRNAs in 40 HCC RNA-Seq
samples, circMTUS1 exhibited a significant increase of CTU in
tumor samples compared to normal ones, while
circVWA8 switched from major to minor isoform in tumor
samples (Fig. 6g). Considering that RNA binding proteins (RBPs)
are involved in the biogenesis of circRNAs1,34, we speculate that
RBPs may play important roles in those CTU-switching events by
affecting the formation of different circRNA transcripts. Thus, we
calculated the correlation of RBP expression levels and major
isoform CTU of differential circular usage (DCTU) genes. A total
21 RBPs were selected from previous study34, and the logarithm
of p-values from Spearman correlation test was plotted (Fig. 6h).
As expected, PTBP1 was correlated with more DCTU genes
compared to TRA2B and MBNL1, which is consistent to our
previous results. Taken together, these findings demonstrate that
by using both circRNA junction ratio and circular transcript
usage, CIRIquant can provide novel angles in circRNA analysis,
enhancing our ability to explore extensive transcriptomic changes
in tumorigenesis.
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Discussion
Accurate quantification of circRNAs is a challenging aspect in
circRNA related studies. Although several computational meth-
ods have been developed for circRNA detection, the reliability of
the output is a crucial factor for further analysis. In recent studies,
the sensitivity and specificity of currently available circRNA
detection algorithms have been thoroughly assessed9,47. However,
the precision for circRNA quantification is still not well char-
acterized. In order to accurately quantify the expression of cir-
cRNAs, we developed CIRIquant, a versatile toolkit for circRNA
quantification analyses. By utilizing RNA-seq aligner to convert
the split mapping of junction reads to the spliced alignment of
linear reads, CIRIquant exhibited a significantly increased sensi-
tivity on back-spliced junction reads detection. In CIRIquant, a
generalized fold change of BSJ reads count and junction ratio was
implemented for differential expression analysis, which proved to
be an effective ranking method for differentially expressed cir-
cRNAs both in samples with/without replicates. Through com-
prehensive evaluations on both simulated and real datasets, along
with qRT-PCR validation, we demonstrated that CIRIquant
exhibits a high efficiency and reduced false-positive rate on cir-
cRNA detection and quantification compared with previous
methods.

In current circRNA studies, there are many factors that affect
the reliability of circRNA characterization and quantification.
Although a few algorithms have been developed for direct esti-
mation of circRNA expression levels2,10,12,13,16, most computa-
tional tools for circRNA characterization simply use the number
of BSJ reads to quantify circRNA expression. Considering the
variation of read length, library size and mapping rate in different
datasets, normalization of circRNA expression values is necessary
for next-step analysis. For circRNA sequencing without RNase R
treatment, due to the fraction of circRNA is usually lower than
1% in transcribed non-ribosomal RNAs (Fig. 1), it requires a large
amount of reads to reach optimal detection of circRNAs. Con-
sidering that the number of detected circRNAs in different
samples varies from a few hundred to tens of thousands, the sum
of BSJ reads is obviously not a proper denominator for normal-
ization in different studies. Instead, counts per million mapped
reads (CPM) can be used to achieve an unbiased estimation of
circRNA expression. In addition, for RNase R-treated samples, a
randomized enrichment effect was observed, as well as the
increased fraction of highly expressed circRNAs, which suggest
that RiboMinus library without RNase R treatment is more sui-
table for expression level analysis of circRNAs.

In addition, the efficiency of RNase R enrichment for circRNAs
is usually distinct among different samples. The enrichment
coefficient of the same circRNA in different experimental repli-
cates is also lower than expected, suggesting that the correction of
RNase R depletion is essential when analyzing RNase R-treated
data. Using RiboMinus/RNase R-treated samples and the corre-
sponding RiboMinus data as the control set, we employed sta-
tistical models to fit RNase R treatment efficiency. After
correcting RNase R treatment efficiency, we obtained more reli-
able expression levels for circRNAs detected in these samples.
However, for samples without control set, an empirical dis-
tribution for RNase R treatment coefficient can be used for
posterior distribution. Accurate quantification of circRNAs is the
foundation for differential expression analysis. For many studies
without replicates, CIRIquant can assign reliable statistics for
expression change based on posterior distribution of log fold
change. The DE score provides reliable rankings for differentially
expressed circRNAs by considering both fold change and p-value.
In RNase R-treated samples, CIRIquant can correct DE score
based on the posterior distribution of RNase R efficiency, and
filter out the majority of circRNAs with relative low p-value and

log fold change. For studies with replicates, CIRIquant adapts the
statistical models in edgeR29 to identify differentially expressed
circRNAs. To remove systematic technical effects of library size, a
normalization step is performed using TMM normalization fac-
tors determined from gene expression levels, then the generalized
linear model is used to estimate statistical significance of circRNA
expression changes.

Accurate determination of the junction ratio for circRNAs will
help us understand the mechanism of circRNA biogenesis and
prioritize functionally significant circular transcripts. With the
reconstructed circular reference sequences, CIRIquant can trans-
form the reverse and split mapping of junction reads to the direct
and continuous alignment of RNA-seq reads against circular
reference, which can maximally improve the accuracy of circRNA
expression quantification. Extensive evaluations on both simulated
and real datasets, as well as experimental validations, demon-
strated that CIRIquant can accurately determine the junction ratio
of circRNAs and identify linear-circular isoform switching events
from paired samples. Notably, CIRIquant embedded a convenient
pipeline for differential expression analysis. Using junction ratio as
a new feature, different pattern of junction ratio change was
observed in three splicing factor knockdown datasets, which
provides novel insights on how splicing factors affect circRNA
biogenesis. We further applied CIRIquant to 20 paired tumor-
normal samples from HCC patients, and identified a number of
DE mRNAs, DE circRNAs and DS circRNAs. Notably, there are
very few overlapped genes among these three groups, and each
group exhibit distinct expression patterns. Moreover, we identified
LC-switching and CTU-switching circRNAs, which had under-
gone significant switching events of junction ratio and CTU.
Taken together, we develop a comprehensive method to quantify
circRNAs with functional potential and provide a new angle for
circRNA prioritization.

Methods
Detection and quantification of junction reads. CIRIquant requires a config-
uration file in YAML format, which contains the reference sequence in FASTA
format and its annotation in GTF format, along with BWA and HISAT223 index
of the reference sequence for read alignment. In the first step, CIRIquant filters
out reads with strong evidence of spliced alignment (minimum mapped segment
length >5 bp), and the unmapped reads are used as candidates for circRNA
detection. In default, CIRIquant uses CIRI212 for circRNA detection. However, a
manual input of back-spliced junction sites in BED format generated by any other
detection tools is also supported. A pseudo reference of circular sequence is
generated by repeating whole length of back-spliced region twice. Then, all
candidate reads are aligned to the pseudo-reference sequence using HISAT2,
where read pairs that are mapped concordantly across 10 bp region of the
junction site are considered as circular reads. Moreover, non-circular reads
aligned across the back-spliced junction sites are used to calculate circRNA
junction ratio.

Correction of RNase R treatment coefficient. For RNase R-treated sample,
CIRIquant employs a Gaussian mixture model to fit the enrichment coefficient
distribution. The enrichment coefficient is calculated using the following equation:

Eff Enrichmentð Þ ¼ BSJRNase R
FSJRNase R

� BSJRiboMinus

FSJRiboMinus
ð1Þ

For all circRNAs that can be detected in both RiboMinus and RiboMinus/RNase R-
treated samples, the distribution of enrichment coefficient is fitted using the
expectation-maximization algorithm in the Gaussian Mixture Model (GMM) from
scikit-learn48. The Bayesian information criterion (BIC) criterion is used for
selection of components number in GMM. The number of FSJ reads in the ribo-
Minus data from the corresponding junction site is extracted from the alignment
results, and the corrected number of BSJ reads is calculated based on the number of
FSJ reads multiplied by junction ratio estimated by GMM. Subsequently, the mean
value of main component in GMM is used as regression coefficient to estimate
corrected expression values. The fitted model is then used as prior distribution of
RNase R enrichment coefficient, and the posterior distribution of corrected cir-
cRNA expression values is used for differential expression analysis.

Then, the fitted distribution of RNase R treatment efficiency is used for
estimation of number of circRNA expression values before RNase R treatment.
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DE-score and DS-score calculation. For RNA-seq data without replicates, the
generalized fold change32 of observed junction reads number is used as a measure
of circRNA expression change. In brief, the BSJ read count of a gene can be
modeled by the Poisson distribution, so the probability of observing k BSJ reads
from a circRNA can be defined as:

P kð Þ ¼ λke�λ

k!
; λ ¼ n ´ x ð2Þ

where λ is the expression level of circRNA, measured by CPM (Count Per Million
mapped reads) and n is a normalization factor of sequencing depth. In the Bayesian
view, the posterior distribution of λ is defined by:

Post λð Þ / λke�k

k!
ð3Þ

which is a gamma distribution with shape k+1 and scale 1. Thus, under two
different conditions, the posterior distribution of expression levels x1 and x2 and
the log2 fold change z= log2(x2/x1) can be effectively calculated. Then, the DE-
score can be calculated by generalized fold change, utilizing the variance infor-
mation of the posterior distribution of fold change:

DE � score ¼ maxðt; 0ÞjPzðz � tÞ ¼ 0:05; if meanðzÞ � 0

minðt; 0ÞjPzðz � tÞ ¼ 0:05; if meanðzÞ< 0

�
ð4Þ

The output DE score balances the fold change and p-value methods, which
provides an effective way to ranking differentially expressed circRNAs.

Similarly, DS-score can be calculated in a similar way. For a circRNA with c BSJ
reads and 1 FSJ reads, the junction ratio r can be modeled by the beta distribution
with shape of c and 1:

Post rð Þ ¼ Beta c; lð Þ ð5Þ

then, the DS-score of log2 fold change y= log2(r2/r1) can be calculated using the
posterior distribution of junction ratio under two conditions:

DS� score ¼ maxðt; 0ÞjPrðr � tÞ ¼ 0:05; if meanðyÞ � 0

minðt; 0ÞjPrðr � tÞ ¼ 0:05; if meanðyÞ< 0

�
ð6Þ

Differential expression analysis of circRNAs. For samples with no biological
replicate, the Fisher’s exact test was performed on a 2 × 2 table of BSJ reads of
circRNA and total mapped reads, in order to determine whether there is a sig-
nificant difference between expression level of circRNAs in two different condi-
tions. Furthermore, the rate-ratio.test package in R was used for estimation of
change in circRNA junction ratio.

For RNA-seq datasets with biological replicates, a modified version of edgeR29

is implemented in CIRIquant for differential expression analysis. Briefly, sample
specific effect is removed by computing normalization factors using trimmed mean
of M-values (TMM) to minimize the log-fold change between samples for most
genes. These factors are used for circRNA abundance normalization. Next, the
default protocol of generalized linear models (GLM) is performed to estimate the
dispersion rate and likelihood ratio test for difference between two groups of
samples.

Simulated data. We used CIRI-simulator11 to generate simulated RNA-seq
datasets. Human reference genome sequence and its gene annotation GTF file from
GENCODE Release 19 (GRCh37.p13) were used for simulated dataset generation.
The read length was set to 100 bp, which can assure a balanced performance for the
tested methods. Insert length was simulated as the mixture of two normal dis-
tribution N(320,70) and N(550,70). Exonic circRNAs were generated in the final
simulated datasets using empirical expression distributions, and the coverage of
linear transcripts was set to 10-fold.

To evaluate the performance of CIRIquant and other computational tools, we
performed CIRI2, CIRCexplorer2, find_circ and KNIFE separately to identify
putative back-spliced junction sites, and then used CIRIquant to quantify circRNA
expression. For each tool, we computed the Pearson correlation coefficient between
its reported number of BSJ reads and the actual value. Considering that the
majority of circRNAs were detected at low-expression levels, raw read counts
without transformation were used for comparison. For Sailfish-cir, which cannot
directly give the number of junction reads, the BSJ reads number can be calculated
as follow:

BSJ read count ¼ Num reads=Effective length ð7Þ

where the num reads and effective length can be directed output from Sailfish-cir
results. Then, the Pearson correlation coefficient was used for performance
measurement.

To assess the performance of RNase R treatment efficiency correction, we
calculated the deviation ratio between the observed expression values before and
after correction in RiboMinus/RNase R-treated library and the expected value in

the RiboMinus sample:

deviation ratio ¼ CPMRiboMinuss=RNase R � CPMRiboMinus

0:5 � CPMRiboMinusRiboMinus=RNase RRNase R þ CPMRiboMinus

� �
ð8Þ

where the deviation ratio represents the bias caused by RNase R treatment in
expression level estimation. The deviation ratio at zero indicates that the expression
level of circRNA remain the same under two different conditions.

Cell culture and knockdown assay. Human HeLa cells were obtained from the
American Type Culture Collection (ATCC CCL-2) and expanded in Dulbecco’s
Modified Eagle Medium (DMEM) supplemented with 10% fetal bovine serum
(FBS) and 1% penicillin-streptomycin (Gibco, USA). The lentiviral vectors carrying
TRA2B, PTBP1, and MBNL1 shRNAs were constructed based on sequence
AGCTAAAGAACGTGCCAAT, GCACAGTGTTGAAGATCAT, and
GCCTGCTTTGATTCATTGAAA, respectively. An adenoviral vector that carried
pSIH-H1-copGFP was purchased from System Biosciences (Mountain View, CA,
USA). HEK 293 T cells were transfected with shRNA plasmids and psPAX2,
pMD2.G at a ratio of 4:3:1. Then, virus was collected after 48 h, and the infections
were conducted for 48 h. HeLa cells were selected with 2 μg/ml puromycin after
transduction.

RNA isolation, library preparation and RNA-seq. Following RNA isolation by
TRIZOL (Invitrogen, Carlsbad, CA), the quality and quantity of RNA were
assessed with NanoDrop, Qubit and BioAnalyzer 2100 (Agilent). A RiboMinus kit
(KAPA, USA) was used for ribosomal RNA depletion. Then, total RNA was
divided into three equal parts after depletion of ribosomal RNA to construct a
riboMinus and two riboMinus/RNase R-treated replicates libraries. RNase R was
purchased from Epicentre (Madison, WI) to digest linear transcripts. rRNA-
depleted RNA was incubated at 37 °C with 10 U/μg RNase R in 16 μl reaction.

For each cell line with shRNA-mediated knockdown of splicing factors, a
RiboMinus and two RiboMinus/RNase R-treated replicates libraries were
constructed. Both libraries were prepared following the TruSeq protocol (Illumina,
San Diego, CA). Illumina HiSeq 2500 platform at the Research Facility Center at
Beijing Institutes of Life Science, CAS was used for sequencing with 2 × 101 bp
paired reads.

Experimental validation. To verify the expression level and junction ratio of
predicted circRNA transcripts, outward primers set (Supplementary Table 5) were
designed to quantify the expression of five circRNAs in control and MBNL1/
PTBP1/TRA2B-knockdown samples. Specifically, additional primers targeting the
5′ and 3′ cirexon of these circRNAs were also used for quantification of forward
splice junction reads. The relative expression of RNA was calculated using GAPDH
as a control. For hsa_intergenic_006404, the sequence of PCR products was
determined using Sanger sequencing.

Public RNA-seq data. Public RNA-seq data from seven circRNA studies were
downloaded from the NCBI SRA database, including four species, Caenorhabditis
elegans (SRP050505), Drosophila Melanogaster (PRJNA241181), Mus Musculus
(PRJNA294035) and Homo Sapiens (SRP011042, SRP052817, SRP067050). The
reference genomes of human (Release 19, GRCh37.p13) and mouse (Release M9,
GRCm38.p4) were downloaded from GENCODE. The reference genomes of
Caenorhabditis elegans (WBcel235) and Drosophila Melanogaster (BDGP6) were
downloaded from Ensembl. Ribosomal RNA sequences for all four species were
downloaded from NCBI Nucleotide database. Paired samples of RNase R-treated
and untreated libraries were used for the measurement of circRNA enrichment
coefficient. RiboMinus treated RNA-seq datasets of tumor (SRX1558046-
SRX1558064) and normal liver samples (SRX1558026-SRX1558045) from 20 HCC
patients generated in a previous study40 were used for differential expression
analysis.

Raw reads were first aligned to rRNA index using HISAT2, where mapped reads
were removed, and the mapping rate was calculated as a measurement for rRNA
percentage. Then, CIRIquant was employed for circRNA characterization and
quantification.

Gene expression analysis in RNA-Seq data. For gene expression analysis, ana-
lysis protocol with HISAT223 and StringTie27 was performed. In brief, the
sequencing reads were aligned to the reference genome using HISAT2, and
StringTie was used to re-assemble the transcriptome, as well as to quantify gene
expression levels. Differential expression analysis was performed using EdgeR29,
with the same parameters as those in circRNA differential expression analysis.

Splicing factor binding site. Public CLIP-seq datasets were downloaded from
iCLIPdb36, where the called peak of TRA2B and PTBP1 were used for binding site
coverage calculation. For circRNA and alternative skipped mRNA exons, we
scanned exon and the upstream and downstream 2 kb region using a sliding
window with size of 8 nt.
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Tissue specificity of circRNAs. The expression pattern of circRNAs in human
tissues were downloaded from the circAtlas database (http://circatlas.biols.ac.cn/).
RNA-seq datasets from RiboMinus RiboMinus/RNase R-treated samples were used
for tissue specificity assessment43. The relative expression level was calculated by
dividing the CPM of circRNA in each tissue by the sum of expression values in all
tissues.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The raw sequence data generated in this study have been deposited in the Genome
Sequence Archive49 in BIG Data Center, Beijing Institute of Genomics, Chinese Academy
of Sciences (https://bigd.big.ac.cn/gsa), with the accession number CRA001838. Details
about data generated in previous studies and analyzed in this study were included in
Supplementary Table 1 and the Methods section.

Code availability
CIRIquant is implemented in Python, which can be freely accessed at https://sourceforge.
net/projects/ciri. The software is packaged with test data, and has been extensively tested
on Linux and OS X.
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