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SUMMARY

Circular RNAs (circRNAs) are emerging as essential
regulators of various biological and disease pro-
cesses. To comprehensively understand the diver-
sity of circRNAs and prioritize their importance, we
present a large-scale study of circRNA repertoires
from multiple tissues from human, macaque, and
mouse. We discovered totals of 104,388, 96,675,
and 82,321 circRNAs from the three species, respec-
tively, with an average of 72.6% being successfully
assembled into full-length transcripts for each spe-
cies. Using these full-length circRNAs, we identified
thousands of evolutionarily conserved circRNAs
that were valuable for functional screening and prior-
itization. By constructing both species-specific and
conserved gene co-expression networks, we in-
ferred circRNA functions on a global scale and prior-
itized promising functional candidates. To illustrate
how well-established prior knowledge facilitates to
screen functional candidates, we used the circRNA
co-expression networks to prioritize circRNAs that
may be involved in liver tumorigenesis and experi-
mentally validated their functions.

INTRODUCTION

Circular RNAs (circRNAs), RNA molecules with both ends cova-

lently linked, have recently emerged as a large class of regulatory

RNAs that are ubiquitous in animals. As a heterogeneous class,

these circular transcripts may participate in different aspects of

biological processes through yet unknown and diverse mecha-

nisms. In addition to the well-studied function of circRNAs as

microRNA sponges (Hansen et al., 2013; Memczak et al.,

2013), extensive studies have revealed that circRNAs play

important roles in gene regulation, development, and carcino-

genesis (Chen et al., 2017; Kristensen et al., 2018a). However,

our understanding of how circRNAs participate in biological pro-

cesses is still preliminary.
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Advances in deep sequencing are giving rise to the rapid

accumulation of large circRNA datasets. For example, Rybak-

Wolf et al. (2015) identified a large number of circRNAs in human

and mouse brains. Meanwhile, circRNA databases have been

established, such as circRNADB (Chen et al., 2016) and CSCD

(Xia et al., 2018), to allow the scientific community to explore

promising candidates. Nevertheless, existing investigations

are far from comprehensive and systematic, because they focus

predominantly on recognizing circRNAs from cell lines or a

single or small collection of tissues, in particular from specific

cancer samples. Therefore, considering that the vast majority

of circRNAs are extremely cell type specific and usually tran-

scribed at low levels, the discovery of novel circRNAs is an

ongoing and improving process. Moreover, a substantial gap re-

mains between the huge number of identified circRNAs and how

to understand their functions. One of the major reasons ac-

counting for this gap is the inability to prioritize functionally

important candidates in a high-throughput manner. Many pio-

neering studies focused on characterizing circRNAs rely mainly

on cherry-picking those circRNAs with the most distinct expres-

sion patterns in disease samples relative to normal samples. For

example, Zheng et al. (2016) revealed that circHIPK3 regulates

cell growth by sponging multiple miRNAs, and Hirsch et al.

(2017) found that circNPM1 expression is highly associated

with acute myeloid leukemia. However, these approaches are

low throughput and limited to a small number of candidates or

samples. Alternatively, evolutionary conservation is a valuable

criterion for functional screening. Two key examples of highly

conserved and expressed circRNAs that exhibit developmen-

tally regulated expression are the circRNAs originating from

the RIMS2 gene (Rybak-Wolf et al., 2015) and the CDR1 anti-

sense locus (ciRS-7) (Venø et al., 2015). However, because of

the lack of full-length circRNAs, sequence conservation com-

parison is restricted to flanking introns and coding DNA se-

quences as well as small-scale studies (Rybak-Wolf et al.,

2015). Considering the prevalence of circRNA isoforms gener-

ated by combinations of internal components within back-

splicing junctions (BSJs) (Gao et al., 2016) and the limited num-

ber of sequenced species, current cross-species conservation

analyses based on partial sequences may not be as fruitful for

understanding specific circRNA functions. Thus, the next major
r(s).
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challenge to overcome will lie in the elucidation of circRNA func-

tions on a global scale.

To address these challenges, we used a compendium of 132

RNA sequencing (RNA-seq) libraries to generate comprehensive

landscapes of the human, macaque, and mouse transcriptome

and expression profiles across mammalian major primary tis-

sues using three types of RNA-seq libraries. These datasets al-

lowed us to discover and quantify circRNAs without bias and

to assess their evolutionary conservation. We identified myriad

circRNAs associated with the three species and systemically

elucidated their diversity and expression patterns. We also iden-

tified thousands of evolutionarily conserved circRNAs and con-

structed co-expression networks to prioritize their functional

importance. Furthermore, we illustrated the application of the

networks by prioritizing differentially expressed circRNAs from

liver cancer datasets and experimentally verified candidates

that might be involved in liver tumorigenesis.

RESULTS

Expanded Landscapes of Human, Macaque, and Mouse
Transcriptomes
We attempted to capture the spectrum of transcriptional diver-

sity using RNA-seq of three species: human, macaque, and

mouse. Seventeen human, 13 macaque, and 14 mouse tissue

samples were used as sources to construct the RNA-seq li-

braries (Figure 1A). Each tissue was sequenced using RNA-seq

with the following goals: (1) RiboMinus and RNase R treatment

for the comprehensive identification of circRNAs, (2) poly(A)

enrichment for accurate mRNA and long noncoding RNA

(lncRNA) expression quantification, and (3) RiboMinus treatment

for accurate circRNA and mRNA expression comparison. These

three libraries were sequenced with paired-end 250 bp (PE250),

paired-end 150 bp (PE150), and PE150 reads, respectively, and

generated an average 10.9, 7.3, and 25.2 GB data per sample for

the three types of libraries, respectively (Figure S1A). Linear tran-

scripts at the threshold defined for expression quantitative trait

loci analysis (reads per kilobase of transcript per million mapped

reads [RPKM] > 0.1) (Melé et al., 2015) were detected using

StringTie (Pertea et al., 2015). For circRNA prediction, four

different tools were performed separately on all PE150

samples, including CIRI2 (Gao et al., 2018), DCC (Cheng et al.,

2016), MapSplice (Wang et al., 2010), and CircExplorer2 (Zhang

et al., 2016). Considering that other than CIRI2, these tools do

not work for long reads (>200 bp), we trimmed the PE250

datasets to PE150 and then used these tools to detect circRNAs.

circRNAs detected by at least two tools and supported by at

least two independent BSJ reads were kept for downstream

analyses (Figure S1B). Furthermore, full-length circRNAs were

reconstructed on the basis of the PE250 datasets using

CIRI-full, which is the only software to effectively assemble

full-length circular transcripts (Zheng et al., 2019). We obtained

71,112, 77,812, and 56,769 full-length circRNAs for the three

species, respectively. PCR-based validation for 20 randomly

selected full-length circRNAs revealed a high level of accuracy

of the reconstruction (Figure S1C; Table S1). By integrating

these two sets of results, we obtained 104,388, 96,675, and

82,321 circRNAs for human, macaque, andmouse, respectively,
outnumbering all existing studies. More important, this study

showed, for the first time, high-quality full-length circular tran-

scripts at high-throughput scales. These sequences will greatly

facilitate downstream sequence-based analysis, such as con-

servation estimation and composition detection. We further

used strategies to evaluate the robustness of our analyses,

including RNase R resistance analysis (Figure S2A) and qPCR-

based quantification (Figure S2B). Collectively, these results

showed a high level of reliability of the identified circRNAs in

this study. These datasets give us an opportunity to comprehen-

sively compare the difference between circular and linear RNA

transcripts.

We first explored circRNA alternative splicing (AS) events

in the three species. By setting a cutoff of ten BSJ reads for

circRNAs, we found that all four types of alternative splicing

events could be observed within circRNAs in all three species

(Figure 1B). Exon skipping (ES) was the most common alterna-

tive splicing type in circRNAs. Alternative 30-splicing site

(A3SS) and alternative 50-splicing site (A5SS) were alsomajor cir-

cular alternative splicing types, both of which occurred in >10%

of the circRNAs, consistent with our previous study showing that

alternative splicing events not only occur in mRNAs but are

also prevalent in circRNAs (Gao et al., 2016). We also measured

the alternative splicing events in long intervening noncoding

RNAs (lincRNAs) and found that circRNAs exhibited a consider-

ably greater proportion of alternative splicing events than did

lincRNAs across all three species. However, lincRNAs are gener-

ally longer than circRNAs (p < 0.01, Wilcoxon test) (Figure S2C)

when comparing full-length lincRNAs (Lizio et al., 2015; You

et al., 2017) and circRNAs. After normalizing their exon numbers

and lengths (Figure S2D), lincRNAs showed an increased num-

ber of isoforms compared with circRNAs (Figure S2E).

Then, the expression patterns of different RNA species were

compared. To obtain an unbiased comparison, the expression

levels of circRNAs, lincRNAs, and mRNAs using RNA-seq with

RiboMinus treatment were normalized. The overall expression

levels of circRNAs across all the studied tissues were surveyed.

In general, circRNAs were transcribed at low levels, comparable

with lincRNAs, but showed decreased expression levels rela-

tive to protein-coding transcripts (Figure 1C). Nevertheless,

we found hundreds of circRNAs that were considerably more

highly expressed than their cognate linear genes (Figure S2F),

and certain loci showed a tendency to exclusively form circular

transcripts. The low expression levels of circRNAs raise the

question as to whether they are actively regulated or result

from non-specific transcriptional noise. To test these possibil-

ities, we evaluated the expression variations of expressed

RNAs in three tissues (brain, liver, and stomach) across multiple

human individuals. For each tissue, transcripts expressed in at

least half of the samples were selected, and for each resulting

transcript, the coefficient of variance, which represents the

variance of expression, was computed. Strikingly, circRNAs

exhibited remarkably decreased levels of expression variance

relative to lincRNAs but comparable with mRNAs across all

compared tissues (Figure 1D), indicating that their expression

is actively regulated rather than stochastic. Considering that

most circRNAs are derived from exons, we investigated whether

the high expression variation of circRNAs originates from their
Cell Reports 26, 3444–3460, March 19, 2019 3445
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Figure 1. Extended Landscapes of circRNAs in Human, Macaque, and Mouse
(A) The mean sequencing data size (left) and the numbers of expressed genes, circRNAs, and lincRNAs (right) are listed in the table. The left table (in orange) lists

themean sequencing data size of each library type. The colored blocks above the right table represent different tissues. For each species, the first row represents

the number of expressed protein-coding genes in a certain tissue, and the second and third rows represent the number of identified lincRNAs and circRNAs,

respectively.

(B) Percentage of circRNAs (BSJ R 10 reads) and lincRNAs containing four types of alternatively spliced exons in each species: ES (exon skipping), A3SS

(alternative 30-splicing site), A5SS (alternative 50-splicing site), and IR (intron retention).

(C) Cumulative distributions of normalized expression levels for linear and circular RNAs (mRNA, lincRNA, and circRNA).

(D) Expression variance for the circRNAs (red), lincRNAs (green), and mRNAs (blue) in the three tissues for different human individuals. The ‘‘n’’ in the brackets

represents the number of individuals used for the analysis. Each dot represents the expression variance of one transcript shared bymultiple individuals (**p < 0.01,

Wilcoxon test).

(E) Coefficient of expression variance for mRNAs and circRNAs. First, the circRNAs with high expression variance (within the red rectangle in Figure 2B) were

extracted. The expression variance of these circRNAs and their parental genes were plotted (top, red rectangle). Second, the mRNAs with high expression

variance (within the blue rectangle in D) were extracted. The expression variance of thesemRNAs and the circRNAs derived from themwere plotted (bottom, blue

rectangle). The density plots colored in red and blue represent the circRNAs and mRNAs, respectively.

(F) Percentage of circRNAs is classified into the four groups according to their expression levels (normalized to the number of back-spliced reads per million

mapped reads).

(G) Number of circRNAs (red) and lincRNAs (green) in the top 1,000 highest expressed transcripts in each tissue from the three species. Colored blocks

correspond to the tissues in (Figure 1A).

See also Figures S1 and S2 and Table S1.
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parental genes. We extracted circRNAs with highly variable

expression levels across different human brain samples and

compared their expression variance with their parental genes.

Only a weak concordance between their variation distribution

was observed (Figure 1E), indicating that the expression of

circRNAs is largely independent of that of their parental

transcripts.

Finally, we investigated the landscapes of circRNA expression

using the RNA-seq libraries with RiboMinus treatment, which

provides an unbiased quantification of both linear and circRNAs.

By normalizing the expression of transcripts using the total

sequencing depth, we classified circRNAs into four catalogs

according to their abundance and subsequently compared the

profiles of every catalog in each tissue. In principle, highly ex-

pressed circRNAs preferred neural tissues (e.g., brain and spinal

cord) to other tissues, consistent with previous studies (Hansen

et al., 2013;Memczak et al., 2013) (Figure 1F). Moreover, the pro-

portion of highly expressed circRNAs from human and macaque

was higher than in mouse. These observations are distinct from

those for protein-coding genes and lincRNAs. Specifically, the

proportion of abundant mRNAs was nearly constant across all

tissues. However, abundant lincRNAs were enriched in the testis

(Figure S2G). We further examined the most abundant RNAs in

each tissue from the three species. The top 1,000most abundant

RNA transcripts in each tissue from these species were selected.

As expected, the majority of the abundant RNAs were mRNAs.

Regarding the remaining RNAs (Figure 1G), the number of

circRNAs outnumbered that of lincRNAs in most tissues, espe-

cially in the brain, where circRNAs accounted for approximately

20% of the selected RNAs in human and macaque.

Most Protein Coding Genes Express One Dominant
circRNA
Profiting from the obtained comprehensive landscapes of the

transcriptomes, we investigated the number of genes express-

ing circRNAs in each species and found that more than half of

the detected genes could express circRNAs (Figure 2A). Taking

human as an example, as many as 61.0% of the genes were

found to yield both linear and circular transcripts, and these

genes tended to generate many more linear isoforms than those

only expressing linear transcripts (Figure 2B). This difference

may be because the genes that express only linear transcript

have low exon number (on average 24.0) compared with the

genes expressing both linear and circular transcripts (Liang

et al., 2017) (on average 73.9). Moreover, circRNAs were far

more prevalent than linear transcripts (Figures 2B and S3A). A

striking example is the human BIRC6 gene, which could

transcribe into 243 circular transcripts, whereas only 12 linear

transcripts were recorded in the Ensembl database. To validate

these findings, we further used the shared circRNAs between

CIRI and DCC (Cheng et al., 2016) from macaque and mouse

and obtained similar results (Figure S3B).

It has been proved that in a given condition, most protein-

coding genes have one major transcript expressed at a signifi-

cantly higher level than others (Gonzàlez-Porta et al., 2013).

We therefore investigated whether the same scenario holds

true for circRNAs. To this end, genes expressing at least two

circRNAs were selected (67% of the total genes). The first two
most abundant circular transcripts on a gene were termed the

major and minor transcripts, respectively. If the major transcript

was expressed at a remarkably (2-fold) higher level than the

minor transcript, the major transcript was then referred to as

the dominant transcript. We plotted the expression levels for

the major and minor transcripts in the brain and observed the

evident existence of dominant transcripts (Figure 2C). We then

quantified the transcript dominance by calculating the ratio of

the expression levels between the dominant circRNAs and the

minor circRNAs. Overall, 23% of the genes exhibited a 2-fold

dominant circRNA (i.e., expressed twice as high as that of themi-

nor circRNA), and for 8% of the genes, the dominant circRNA

was 5-fold dominant (Figure 2D).

We next sought to verify whether the existence of the domi-

nant circRNA is a universal characteristic of the transcriptional

signature. By the same measurement, we found that this was

the case with the remaining tissues in human (Figure S3C).

This finding further raised the question as to how often the

same dominant circRNA can be detected for a gene across

different tissues. We found that the dominant circRNAs were

often the same major circRNAs for 18% of the genes that were

expressed in at least two tissues. In addition to being highly ex-

pressed, the dominant circRNAs exhibited decreased levels of

tissue specificity (Figure 2E) and increased junction ratio, which

was defined as the ratio of BSJ reads and total number of reads

aligned to the junction site (Figure 2F), suggesting that they may

play more essential roles than the minor circRNAs. Finally, we

examined whether the dominant circular transcripts were simply

byproducts of the dominant linear transcripts. The patterns of

overlap between dominant circular and linear transcripts could

be classified into the following three categories according to

shared exons: (1) overlapped: both of them use the same subset

of exons; (2) partially overlapped: some but not all of the exons

are shared; and (3) none overlapped: without shared exons (Fig-

ure 2G). Notably, the percentage of overlapped patterns was

approximately 50%, while that of partially or none overlapped

patterns was approximately 50% (Figure 2H), indicating that

the formation of these dominant circular and linear transcripts

is likely to be independently regulated. For further validation,

we calculated the Pearson correlation coefficient between domi-

nant circular and linear transcripts using their expression pro-

files. As shown in Figure 2I, the expression pattern correlation,

ranging from�0.2 to 0.4, showed no relatedness between these

two types of transcripts. These results collectively suggest that

the dominant circular transcripts are not simply alternative

splicing byproducts of the dominant linear transcripts but may

have independent biological mechanisms accounting for their

formation.

RNA Binding Proteins Are Key Regulators of Tissue-
Preferential Expression Pattern in circRNAs
We studied the tissue specificity of circRNAs using human, ma-

caque, and mouse tissues. As controls, both lincRNAs and

mRNAs were also surveyed. The distribution of mRNA expres-

sion across tissues was U-shaped, whereas those of circRNAs

and lincRNAs were typically L-shaped (Melé et al., 2015) (Fig-

ure 3A, top), suggesting increased levels of tissue specificity for

noncoding transcripts compared with mRNAs. Indeed, when
Cell Reports 26, 3444–3460, March 19, 2019 3447



Figure 2. Characteristics of circRNA Expression Patterns

(A) Proportion of two catalogs of protein-coding genes. The protein-coding genes are classified into two catalogs, where the first catalog only expresses mRNA

(gray) and the second one expresses both circular and linear transcripts (blue).

(B) Comparison of transcript number per gene between the two types of protein-coding genes.

(C) Relative expression levels of the major and minor circular transcripts. Specifically, the first two most abundant circular transcripts on a gene that can express

more than two circRNAs are termed as the major and minor transcripts, respectively. Each dot represents a gene. The red solid line is the regression line that

visualizes a linear relationship as determined through regression.

(D) Number of genes explained by each category for the expression ratio of the major to minor transcript.

(E) Comparison of tissue specificity between dominant and minor transcripts.

(F) Comparison of the junction ratio between the dominant and minor transcripts.

(G) Examination of whether the major circular transcripts are derived from the same major linear transcripts. The patterns of overlap between dominant circular

and linear transcripts are classified into the following three categories according to shared exons: (1) totally overlapped: both of them use the same subset of

exons; (2) partially overlapped: some but not all of the exons are shared; and (3) none overlapped: without shared exons.

(H) Percentage of genes containing dominant circular and linear transcripts explained by each category noted above.

(I) Expression correlation between dominant linear transcripts and circular transcripts in each category.

See also Figure S3.
using the tissue specificity index (Yanai et al., 2005) to quantify

how strongly the expression is dominated by a single tissue,

the difference between noncoding RNAs and protein-coding

transcripts was significant. This scenario held true when the

BSJ read cutoff for circRNAwas set to a value of 10 (Figure S4A).

Both circRNAs and lincRNAs were expressed in a more tissue-
3448 Cell Reports 26, 3444–3460, March 19, 2019
specific manner than protein-coding genes (p < 0.01, Wilcoxon

test) (Figure 3A, bottom). In particular, the vast majority of

circRNAs (64%) were highly tissue specific (tissue specificity

index = 1.0) relative to only �15% of protein-coding genes.

The discrepancy between this type of noncoding RNAs and

protein-coding genes held true for the compared transcripts



A B

C

D E F

G

Figure 3. Tissue Specificity of circRNAs

(A) Number of tissues in which genes are expressed (top) and the tissue specificity index (bottom) of the three types of transcripts. Values close to 1 represent high

tissue specificity.

(B) Abundance of the three types of transcripts (columns) across tissues (rows) for each species. Rows and columns are ordered on the basis of a k-means

clustering algorithm. Color intensity represents fractional density across the columns of normalized sequencing depth.

(C) circRNA-mRNA co-expression network construction and functional enrichment. First, the Pearson correlation coefficient was computed for each circRNA-

mRNA pair on the basis of the expression profiles. Then, the circRNA-mRNA pairs with Pearson correlation coefficients > 0.75 were screened out to construct the

co-expression network, where each node denotes a circRNA or mRNA and the edges represent the correlation between the circRNAs and mRNAs. Finally, Gene

Ontology (GO) functional enrichment analysis was performed using the top 5% of mRNAs with the highest degree (right). As controls, circRNA and RBP host

genes were also simultaneously analyzed.

(D) Pearson correlation coefficient between circRNAs and RBPs and between circRNAs and their host genes.

(E) Tissue specificity of circRNAs and RBPs. Each node denotes one transcript. Both circRNAs and RBPs show significantly increased tissue specificity

compared with other protein-coding genes (**p < 0.01, Wilcoxon test).

(F) Shared circRNAs between brain and testis.

(G) Expression profiles of different RBPs (columns) in brain and testis (rows).

See also Figure S4.
expressed at similar levels (Figure S4B). We next applied a

focused analysis on the dominant tissues of circRNAs. As shown

in Figure 3B, consistent with previous studies (Rybak-Wolf et al.,

2015; You et al., 2015), the vast majority of circRNAs were exclu-

sive to neural tissues, especially the brain. Both tissues showed

well-conserved tissue specificity across species, suggesting that
these circRNA expression patterns are not stochastic but instead

are selectively maintained.

As the most striking characteristic of circRNAs, the extremely

tissue-specific expression of circRNAs raises the following

question: what is the key determinant of this tissue-preferential

expression pattern? Considering that RNA binding proteins
Cell Reports 26, 3444–3460, March 19, 2019 3449



(RBPs), such as QKI (Conn et al., 2015), ADAR (Ivanov et al.,

2015), and DHX9 (Aktasx et al., 2017), have been cumulatively

proved to regulate the formation of circRNAs and are involved

in all aspects of post-transcriptional processes (Pereira et al.,

2017), we speculated that these regulators may also be the pri-

mary factors that contribute to the tissue-specific expression of

circRNAs. To test this possibility, we first examined whether

circRNAs are more frequently associated with RBPs than other

genes. A co-expression network between circRNAs and mRNAs

was constructed using their expression profiles. The top 5% of

the most frequently connected mRNAs (hub genes) were used

for Gene Ontology (GO) enrichment analysis. Consistent with

the GO enrichment result with the RBPs (Figure 3C), circRNAs

were more frequently associated with mRNAs that were pre-

dominantly enriched for alternative splicing-related functions,

such as RNA and mRNA splicing. Conversely, their host genes

were found to be involved in other non-alternative splicing-

related functions (Figure S4C). Moreover, the RBP binding sites

were enriched in the flanking introns of circRNA compared with

linear mRNA (p = 9.217e-07, Mann-Whitney U test) (Figure S3E).

Additionally, the expression patterns of the circRNAs showed

strong associations with those of RBPs, with an average Pearson

correlation coefficient of 0.9. However, they were poorly corre-

lated with their linear counterparts (Kristensen et al., 2018b)

(Figure 3D), which was further recapitulated using time-series

datasets (Rabani et al., 2014) (Figures S3E–S3G). RBPs ex-

hibited a highly tissue-specific expression pattern, which was

comparable with that of circRNAs (Figure 3E). Considering

that the RBP proteins exhibited a similar expression profile

compared with their genes, which had been verified using the

data from the HUMAN PROTEOME MAP database (Kim et al.,

2014), the RBP proteins should have strong associations with

circRNAs in terms of expression profile (Figure S3H). Similar

observations were also found when the same analysis was

extended to the GTEx datasets (Figure S3I).

Taken together, these results suggest that RBPs are the

key regulators of the tissue-preferential expression pattern of

circRNAs. Taking the two most circRNA-enriched tissues (brain

and testis) as examples, the RBPs in these two tissues were

quite distinct from one another in terms of their expression pro-

files (Figure 3F), corresponding to only a small fraction of shared

circRNAs between the two tissues (Figure 3G).

Orthologous circRNAs Exhibit Highly Conserved
Expression and Splicing Patterns across Species
Evolutionary analysis is essential for insights into the genetic

basis of phenotypes and for functional screening. For circRNAs,

such analysis remains scarce despite growing attention to these

circular transcripts. Thus, we sought to identify evolutionarily

conserved circRNAs on the basis of orthologous genes. Specif-

ically, orthologous genes were identified and the circRNAs on

these orthologous genes were subsequently screened. The re-

sulting circRNAs with the same BSJ sites between any two

species were defined as overlapped orthologs (OO-type), with

the remaining circRNAs termed non-overlapped orthologs

(NO-type) (Figure 4A). We first estimated the presence of shared

OO-type circRNAs and orthologous genes across species. We

found that circRNAs evolve rapidly; approximately 19.1% of
3450 Cell Reports 26, 3444–3460, March 19, 2019
human circRNAs were also detected as expressed in ma-

caque, and only approximately 4.4% were expressed in mouse,

whereas more than 67% of conservation was observed in pro-

tein-coding genes. We also determined how well the OO-type

circRNAs were conserved across tissues among species and

found that approximate 4.8% of them were recurrently ex-

pressed in a certain tissue between any two different species

(Figures S5A and S5B). Then, we compared the exon boundary

conservation of the OO-type circular and linear transcripts

between human and macaque. Considering that most of the

cirexons in circRNAs are identical to those in linear mRNAs,

only the intergenic/intronic circRNA fragments (ICFs) (Gao

et al., 2015) that were exclusively present in circRNAs were

used for the analysis. The boundary conservation level of ICFs

was similar to that of protein-coding exons. Consequently,

compared with lncRNAs, the OO-type circRNAs exhibited

more constraint with respect to maintaining an exact splicing

event position among orthologous pairs (Figure S5C). Next, the

expression levels of conserved circRNAs were characterized.

The OO-type circRNAs exhibited increased expression levels

compared with species-specific circRNAs, whereas this sce-

nario was not observed in the shared orthologous genes from

which the circRNAs were derived. In summary, these findings

suggest that there is a distinct evolutionary conservation pattern

in orthologous circRNAs and that these shared circRNAs may

undertake essential biological functions.

We next narrowed down to the OO-type circRNAs (2,772) that

were conserved across the three species. We first characterized

the expression patterns of the OO-type circRNAs and their linear

counterparts. As shown in Figure 4B, the orthologous genes

exhibited remarkably increased levels of concordant expression

patterns among species compared with the OO-type circRNAs.

That is, the expression pattern of ortholog genes across different

tissues was more consistent than that of the OO-type circRNAs.

The expression patterns of the OO-type circRNAs were more

concordant in closely related species (e.g., human and ma-

caque). Moreover, a number of OO-type circRNAs were ex-

pressed much higher than their host genes across all the studied

tissues, suggesting their functional importance. Additionally,

OO-type circRNAs exhibited remarkably increased expression

levels (Figure 4C), reduced levels of tissue specificity (Figure 4D),

decreased levels of expression divergence (Figures 4E and S5D),

and an increased number of repetitive elements in the flanking

introns (Figure S5E) compared with NO-type circRNAs across

the surveyed species. We next investigated whether OO-type

circRNAs in different species share similar alternative splicing

patterns. To this end, we calculated the values of ‘‘percentage

spliced in’’ (J) for alternative splicing events in human OO-

type circRNAs and compared these values with the J values

of their circular orthologs in macaque (Figure 4F). With few ex-

ceptions, the J values for all the OO-type circRNA pairs were

highly concordant between human and macaque (p < 2.2e-16;

Figure 4G), indicating that the conservation of OO-type circRNAs

lies not only in their expression levels but also in their internal

splicing patterns.

To compare the expression levels of OO-type circRNAs

and their corresponding mRNAs, we used RiboMinus transcrip-

tomic data from brain samples. Compared with the remaining
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Figure 4. Cross-Species Conservation of Overlapped Orthologous circRNAs

(A) Overlapped orthologous (OO-type) circRNAs are derived from orthologous genes between species a and b and share the same BSJs. Non-overlapped

orthologous (NO-type) circRNAs are derived from orthologous genes from species a and b but do not share the same BSJs.

(B) Expression of orthologous genes and OO-type circRNAs that are shared by the three species across tissues. Rows denote tissues, and columns represent

orthologous genes as well as the OO-type circRNAs derived from them.

(C) Comparison of the expression levels of highly expressed OO-type circRNAs (top 10% of the most abundant circRNAs) and highly expressed NO-type

circRNAs (top 10% of the most abundant circRNAs). Expression levels are normalized to the total BSJ read count.

(D) Tissue specificity of OO- and NO-type circRNAs in the three species.

(E) Expression divergence between OO- and NO-type circRNAs in related species. Expression divergence is measured as log2(expression level of species a)/

expression level of species b). Expression levels are normalized to the total BSJ read count.

(F) Detection of splicing events in OO-type circRNAs between a pair of species (a and b).

(G) Comparison of J values in OO-type circRNAs between human and macaque.

(H) Relative expression levels of circRNAs in brain transcriptomes of the three species. Each circle denotes a circRNA, with the circle size representing its

normalized expression level. Red and black circles represent OO-type and other circRNAs, respectively. The dashed lines along the x axis represent the

chromosomes from each species. The y axis represents the relative expression level of a circRNA and its corresponding mRNA as measured by the number of

circular reads divided by the total read count in the same BSJ. The circles above the dotted line at Y = 0.5 indicate circRNAs whose expression levels are higher

than those of their corresponding mRNAs.

(I) Comparison of the expression levels of OO-type circRNAs (red) and other circRNAs (gray). ‘‘c > m’’ represents circRNA loci at which the circRNA expression

level is higher than themRNA expression level, whereas ‘‘c <m’’ represents circRNA loci at which the circRNA expression level is lower than themRNA expression

level. In both categories, OO-type circRNAs exhibited elevated expression levels.

(J) Sequencing depth of the ciRS-7 locus in the CDR1 gene as measured in three independent RNA-seq datasets: RiboMinus, RiboMinus+RNase R, and PolyA-

selected mRNA-seq.

(K) Functional enrichment analysis of OO-type circRNAs and other circRNAs in the brain transcriptomes of the three species.

See also Figure S5.
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circRNAs, OO-type circRNAs exhibited significantly elevated

expression levels (p < 0.01, Wilcoxon test; Figure 4H). We clas-

sified these circRNAs into the following two classes, c > m

(circRNA expression level higher than mRNA expression level)

and c < m (circRNA expression level lower than mRNA expres-

sion level), according to the relative abundance to their corre-

sponding linear transcripts. As shown in Figure 4I, for both

classes, the OO-type circRNAs exhibited substantially elevated

expression levels relative to other circRNAs. For example,

ciRS-7 was one of the most abundant circRNA in all the brain

samples analyzed (Figure 4J). However, consistent with a

previous study (Piwecka et al., 2017), its parental gene, CDR1,

did not produce linear transcripts at this locus, as revealed by

poly(A)-selected mRNA sequencing (Figure 4J). Finally, we per-

formed functional enrichment analysis of the OO-type and other

circRNAs in each species. As shown in Figure 4K, the enriched

functions of the OO-type circRNAs were highly overlapped.

Most of these circRNAs appear to be involved in neural pro-

cesses and functions, including the MAPK signaling pathway

and glutamatergic synapse and morphine addiction activities

(Figures 4K and S5F). In contrast, there was no significant func-

tional enrichment for other circRNAs. Collectively, we conclude

that OO-type circRNAs are highly conserved across species

with respect to both expression and splicing patterns. Finally,

using CIRI-full, we identified a total of 37,591 (55.4% of

67,907) full-length OO-type circRNAs from the three species,

providing the most comprehensive catalog of evolutionarily

conserved circRNAs thus far, which will greatly facilitate the

functional analysis of circRNAs.

Inference of circRNA Function Using a Co-expression
Network
With a few exceptions, the function of most circRNAs remains

elusive. A co-expression network presents a valuable platform

for functional annotation and screening. To predict functional

circRNAs and their potential regulatory mechanisms, we inferred

co-expression networks independently for each of the three spe-

cies, where nodes represented genes (circRNAs or mRNAs) and

edges represented a co-expression relationship between gene

pairs. This network consisted of 33,512,072 co-expression rela-

tionships from 38,532 nodes. As shown in Figure 5A, the corre-

lations of nodes recapitulated tissue types (i.e., the nodes and

edges on the network exhibited tissue-specific distributions).

For example, the brain- and spinal cord-specific genes were

clustered together, while the heart-specific genes were tightly

connected.

We first aimed to verify the topological signature of the

network in terms of the node degree, where a higher degree in-

dicates that the node is likely to be a hub and participate in more

interactions, and the betweenness centrality (BC), where a node

with a higher BC indicates that it acts as a bridge to connect

different components and control communication. An examina-

tion of the node degree on the network fit a power-law distribu-

tion (p = 0.00049) (Figure S6A), indicating that the network was

similar to many other biological and scale-free networks, where

high connectivity genes are few in number and most genes

have low connectivity. Moreover, circRNAs showed significantly

increased levels of BC compared with mRNAs (p = 0.00029,
3452 Cell Reports 26, 3444–3460, March 19, 2019
Wilcoxon test) (Figure S6B). For example, 42 of the top 50 largest

BC nodes were circRNAs and exhibited increased levels of

specific topological characteristics relative to mRNAs. To further

validate the predictions provided by the network, we took advan-

tage of gene knockdown experiments. Briefly, we knocked down

three RBPs—TRA2B, MBNL1, and PTBP1—in HeLa cells. The

CIRI2 pipeline was applied to the resulting knockdown tran-

scriptomic datasets, and the expression levels of circRNAs

were normalized. We used the proportion of shared circRNAs

between the knockdown experiments and the network predic-

tion to assess whether the direction of the alternations in the

circRNAs after gene knockdown experiments could be pre-

dicted by the network (Figure 5B). To increase the reliability of

the analyses, two publicly available gene knockdown datasets,

DHX9 and QKI, were also analyzed using the same approach.

We found high levels of concordance between the correlation

predictions and the real alterations (Figure 5B; Tables S2–S6).

Closer inspection revealed that only a few concordant circRNAs

were shared among the RBPs (Figure 5C), suggesting that

circRNAs tend to be exclusively regulated by specific RBPs.

Intriguingly, these RBPs also exhibited distinct signatures in

terms of the regulated circRNAs (Figure 5D). For example, the

circRNAs regulated by TRA2B showed the highest level of BCs

and expression and the lowest level of tissue specificity

compared with other RBPs. It should be noted that the function

of RBPs was reflected consistently by the direction of the

expression changes after knockdown (Figure 5B, pie plots).

DHX9, an abundant nuclear RNA helicase that prevents the for-

mation of circRNAs (Aktasx et al., 2017), served as an example,

and the expression levels of nearly all regulated RNAs (>99%)

increased after its knockdown. In contrast, with the knockdown

of QKI, an alternative splicing factor that promotes the formation

of circRNAs (Conn et al., 2015), decreased expression levels

were observed for nearly all the correlated circRNAs. Therefore,

we further explored the entire connection signature of the

network. As shown in Figure 5E, the vast majority (an average

of 93%) of the network connections were positive correlations,

and they occurred more frequently between protein-coding

genes or between circRNAs. Connections between circRNAs

and protein-coding genes, however, tended to be negative

(14%). This may be because many protein-coding genes, such

as RBPs that connect with circRNAs more frequently on the

network, function as repressors of circRNA formation. Indeed,

we found that 32% of the RBPs showed a negative correlation

tendency. DHX9 and ADAR served as examples, consistent

with previous studies, and an overwhelming majority of negative

connections were observed. Additionally, the vast majority

(>90%) of connections between circRNAs and HNRNPL, QKI

and FUS, which can promote the circularization of exons by

binding to flanking intronic sequences, were positive, which is

in agreement with previous reports (Conn et al., 2015; Fei

et al., 2017), revealing the reconstruction specificity of the

network.

To further explore the detailed interplay between circRNAs

and mRNAs, we emphasized the recently characterized m6A

modification process (Zhou et al., 2017) (Figure 5F). Seventy

percent of the experimentally identified m6A circRNAs were de-

tected from circRNAs that are directly connected with the above
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Figure 5. Co-expression Network of Human circRNAs and mRNAs

(A) Visualization of the Pearson correlation network of circRNAs and mRNAs from human tissues. Each node (dot) in the network represents a circRNA or mRNA,

and the edges (lines) correspond to correlations between individual measurements above the defined threshold. Co-expressed nodes form closely connected

complex clusters within the graph. Nodes are colored according to their specific tissues.

(B) Network validation using shRNA knockdown experiments. Briefly, shRNAs targeting TRA2B, MBNL1, and PTBP1 were cloned into vectors. The shRNA-

expressing plasmids were co-transfected into 293T cells. Viral supernatants were collected and then used to transduce HeLa cells. After knocking down each

RBP, we calculated the fold change of each circRNA and extracted the circRNAs with fold-change > 2. On the basis of the resulting circRNAs, we found that

percentage of circRNAs that the expression alternation can be correctly predicted by the co-expression network. The pie plot shows the ratio of concordant

predictions to experimental observations. The orange color in the pie indicates the circRNA expression levels increased after gene knockdown, whereas the gray

color denotes that those of the circRNA decreased.

(C) The Venn plot shows the number of shared circRNAs with expression fold change > 2 after knocking down the RBPs.

(D) The tissue specificity, expression levels in the brain and betweenness centrality of RBP-regulated circRNAs.

(E) Percentage of positive connections for the entire network, for all human RBPs, for functionally known RBPs, and for functionally unknown RBPs. circRNA-

circRNA, connections between two circRNAs; mRNA-mRNA, connections between twomRNAs; circRNA-mRNA, connection between a circRNA and anmRNA.

circRNA-RBPs, connection between a circRNA and an RBP, where ‘‘n’’ denotes the number of RBPs (rows), and thewhite line on this panel indicates that the ratio

of positive connections to negative connections equals 1. ‘‘n = 260’’ denotes the number of RBPs containing more positive connections (ratio > 1:1). ‘‘n = 121’’

represents the number of RBPs with fewer positive connections (ratio < 1:1).

(F) A schematic diagram of circRNA translation driven by m6A.

(G) Proportion of m6A circRNAs in previous studies that were identified in the network (blue bar) and that were connected by m6A modification-related genes

(orange bar). Comparison of the percentage of correlated circRNAs between eIF4G2 and eIF4E (**p < 0.01, binomial test).

(H)Comparisonof expression levels betweenm6A-relatedcircRNAs and randomly sampled circRNAs from the network or total circRNAs (**p < 0.01,Wilcoxon test).

(I) Comparisons of tissue specificity betweenm6A-related circRNAs and randomly sampled circRNAs from the network or total circRNAs (**p < 0.01,Wilcoxon test).

See also Figure S6 and Tables S2–S6.
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genes on the network. Moreover, eIF4G2 (Yang et al., 2017b), a

cap-independent translation factor that leads to translation

initiation in the absence of eIF4E, connected with more m6A

circRNAs than eIF4E (Figure 5G). The circRNAs correlated with

these genes also displayed expression patterns distinct from

those of other randomly sampled circRNAs. Specifically, these

m6A circRNAs showed increased expression levels (Figure 5H)

and decreased tissue specificity (Figure 5I) compared with other

circRNAs.

Evolutionarily Conserved Co-expression Network
Evolutionary conservation is a powerful criterion to identify func-

tionally essential genes from a set of co-regulated genes. The co-

regulation of gene pairs over a large evolutionary distance implies

that the co-regulation confers a selective advantage, most likely

because the genes are functionally related (Stuart et al., 2003).

Consequently, we reconstructed an evolutionarily conserved

co-expression network for circRNAs and protein-coding genes

across the three species. Briefly, for each species and for

each pair of orthologs (circRNAs or mRNAs), we computed the

Pearson correlation coefficients of their expression patterns

(Figure 6A). Subsequently, the combination of each orthologous

gene pair was ranked according to its correlation score. We

defined an orthologous gene cluster as a set of orthologs

(circRNAs or mRNAs) across the three organisms and assigned

each gene to at most a single orthologous gene cluster. For

example, a cluster referred to the human gene STK14B, the ma-

caque gene p70S6Kb and the mouse gene Rps6kb2, all of which

encode a ribosomal protein S6 kinase (Gout et al., 1998). Given

two orthologous gene clusters, if the combination of correlation

coefficients measured in each species was significantly higher

or lower than expected by chance, they were considered evolu-

tionarily relevant. Hence, these two orthologous gene clusters

were considered co-expressed. On the basis of this approach,

we combined all the links between pairs of co-expressed orthol-

ogous gene clusters to build an evolutionarily conserved co-

expression network. In total, we calculated the co-expression

relationships for 13,356 orthologous genes and 2,772 OO-type

circRNAs that were conserved across the three species. The re-

sulting co-expression relationships formed a network with 12,119

nodes (2,537 circRNAs and 9,582 protein-coding genes) and

435,025 edges. Network connectivity relies mainly on expression

levels, as more connections are detected for highly expressed

nodes (Necsulea et al., 2014). We therefore investigated whether

this holds true for this network. Indeed, the connections of both

circRNAs and mRNAs increased by increasing the maximum

expression level (Figures 6C and S6C). Furthermore, circRNAs

generally had higher connectivity (mean degree 98.8) than pro-

tein-coding genes (mean degree 64.6) (p = 0.00033, Wilcoxon

test). The highly connected circRNAs may represent interesting

candidates for further studies on gene expression regulation.

We used the constructed co-expression network to infer po-

tential functions for circRNAs by using a ‘‘guilt-by-association’’

analysis. We identified 72 tightly intra-connected clusters with

at least 20 nodes, with an average circRNA proportion of 18%.

The largest 15 clusters are illustrated in Figure 6A.GO enrichment

was performed for each cluster using the biological process

terms. As shown in Figure 6B, the clusters were enriched for tis-
3454 Cell Reports 26, 3444–3460, March 19, 2019
sue-specific functions, such as modulation of synaptic transmis-

sion (cluster 1) and muscle cell development (cluster 3). Cluster 1

had the highest circRNA proportion and was enriched for synap-

tic transmission, consistent with the predominant circRNA neural

specificity. GO enrichment analyses for individual clusters

suggested that circRNAs may be involved in diverse biological

functions, such as adaptive immunity, blood coagulation, and

neurotransmitter transport. Using this approach, we provided

functional implications for thousands of circRNAs that previously

had no meaningful annotation.

On the basis of the annotations, we checkedwhether the anno-

tation of the OO-type circRNAs was the same as that of their host

genes. Strikingly, we found that most circRNAs (65%) and their

host genes did not have the same GO annotations (Figure 6D).

The network edges not only produce functional clusters but

also facilitate a reliable capture of intra-cluster functional differ-

ences (Figure 6E). For example, all three circRNAs derived

from the human RIMS2 gene were annotated with GO term

GO:0050804 (modulation of synaptic transmission). We then per-

formed functional enrichment for the uniquely connectedmRNAs

of these three circRNAs and discovered that they were en-

riched for different GO terms, including GO:0050890 (cognition),

GO:0006813 (potassium ion transport), and GO:0001505 (regula-

tion of neurotransmitter levels). The increased resolution by add-

ingmore transcriptomic datawill facilitatemore accurate circRNA

annotations and extend the applications for the conserved co-

expression network.

To this end, we integrated the identified circRNAs with their

expression patterns, genomic features, conservations, and func-

tional annotations into a web server called the circRNA Atlas

(circatlas.biols.ac.cn) (Figure 6F). Users can browse, search,

retrieve, visualize, and prioritize circRNAs and their related

information. We believe that this resource will help the circRNA

community to annotate and prioritize circRNAs.

Prioritization of Liver Cancer-Related circRNAs in the
Context of the Network
Although RNA-seq has emerged as the choice for interrogating

the transcriptome, most analysis methods do not consider

prior knowledge of biological networks to detect differentially ex-

pressed genes, which may result in many irrelevant significant

genes (Lei et al., 2017). We investigated the circRNA expression

profiles in the 40 RNA-seq datasets of hepatocellular carcinoma

(HCC) tumor tissues and their adjacent normal tissues (Yang

et al., 2017a). First, expressed circRNAs in these samples were

detected and ranked by their differential expression significance

(Figure 7A, leftmost column). To prioritize these candidates in the

context of co-expression network, a random walk algorithm

(Köhler et al., 2008) was used to assign a score to each candidate

circRNA, which measures the relative network distance of the

circRNA to all known liver cancer associated genes. The candi-

date circRNAs were then re-ranked according to their assigned

scores and conservation among species (Figure 7A). Next, we

experimentally validate these circRNAs using cell proliferation ex-

periments by overexpressing them in the LO2 cell line. Evidently,

the new ranks of the circRNAs tended to include more functional

candidates after the re-ranking process, highlighting the ne-

cessity of considering differentially expressed circRNAs in the

http://circatlas.biols.ac.cn
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Figure 6. Evolutionarily Conserved Co-expression Network for mRNAs and circRNAs across the Three Species

(A) Construction of evolutionarily conserved co-expression network in human, macaque, andmouse. For each species and for each pair of orthologous circRNAs

or mRNAs, the Pearson correlation coefficients of their expression patterns were computed. Subsequently, the combination of each orthologous gene pair was

ranked according to its Pearson correlation coefficient. Then, an orthologous gene cluster was defined as a set of orthologous genes (circRNA or protein coding)

across the three organisms, and each gene was assigned to at most a single orthologous gene cluster. Given two orthologous gene clusters, if the combination of

the correlation coefficients measured in each species was significantly higher or lower than expected by chance, they were considered as co-expressed.

Subsequently, all of the links between pairs of co-expressed orthologous gene clusters were combined to build the conserved co-expression network. Finally, the

MCL algorithm was applied to cluster the constructed network, and the 15 largest MCL clusters in the co-expression network are shown.

(B) GO enrichment for the top 15 largest MCL clusters; only the most significant GO category is displayed.

(C) Gene expression levels for nodes with different degrees of network connectivity. Highly connected circRNAs tend to have higher expression levels.

(D) Percentage of circRNAs annotated with the same GO term as their host genes.

(E) Functional divergence of circRNAs derived fromRIMS2. Top: illustration of the genomic region of three circRNAs derived from the human RIMS2 gene. Curved

gray lines indicate the BSJs of circRNAs. Middle: expression profiles of the three circRNAs across the tissues (columns) in human, macaque, and mouse (rows).

Bottom: functional annotation of the three circRNAs. On the basis of the conserved co-expression network, these three circRNAs are grouped together and

annotated with GO term GO:0050804 (gray blocks). However, they are enriched in different functions (red blocks) when annotating their uniquely connected

mRNAs.

(F) All the identified circRNAs and their annotations are integrated into the online platform circAtlas.

See also Figure S6C.
context of the co-expression network. Finally, we focused on the

circRNA with the highest weighted score, which was formed by

circularization of the second exon of the CDYL2 gene.
To validate the circular transcript of CDYL2, we designed

primers (Table S7) that specifically amplified the canonical or

back-spliced isoforms of CDYL2 and confirmed the amplified
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Figure 7. Prioritizing Candidate Liver Cancer Related circRNAs in the Context of the Co-expression Network

(A) Ranking candidate differentially expressed circRNAs in the context of co-expression network. circRNAs were first ranked by the differential

expression significance value (leftmost column). A random walk algorithm (see STAR Methods) was used to assign a score to each candidate circRNA. The

candidates were then re-ranked according to their assigned scores and conservation to define a priority list of circRNA candidates. Next, we experimentally

validated functional circRNAs by overexpressing these circRNAs in the LO2 cell line (*p < 0.05 and **p < 0.01, Wilcoxon test). Cons., conservation; SigScore,

significance score. In the network, yellow nodes represent known liver cancer-related genes and blue nodes represent circRNAs strongly associated with these

genes.

(B) circCDYL2 was detected in different cell fractions. Nuclear and cytoplasmic RNA was extracted, and junction primers were used for circCDYL2 detection. U1

and b-actin were used as the control for nuclear and cytoplasmic RNA, respectively.

(C) RNA pull-down assay to detect interacted proteins of circCDYL2. The proteins in the red rectangle were extracted and subjected to mass spectrometry

analysis. As a result, five proteins were identified and three (in red color) of them were also included in the co-expression network.

(D) Expression levels of circCDYL2 in 105 randomly selected paired tumor and adjacent liver tissues (**p < 0.01). Data are presented asmean value ±SD. The two-

tailed unpaired Student’s t test was used to determine statistical significance between the adjacent and tumor groups.

(E) Kaplan-Meier survival curve indicating that the low expression of circCDYL2was correlated with low survival rates. Patients in the cohort were divided into two

groups according to the median value of circCDYL2 expression level. The p value between the circCDYL2-high and circCDYL2-low groups is 0.021 (Gehan-

Breslow-Wilcoxon test).

(F) Real-time qPCR showing that the expression levels of circCDYL2 in HCC cell lines were lower than in non-cancerous cell lines.

(G) Proliferation, migration, and colony formation assay of the control LO2 cells or circCDYL2 stably silenced LO2 cells. Top: cell proliferations were assessed

using EdU immunofluorescence staining method. Middle: cell migration assays were performed using transwell chamber. Bottom: colony formation assay. Bar

plots show the quantification of left panels, respectively. The results showed that silencing circCDYL2 significantly enhanced the proliferation, migration, and

colony formation capabilities in LO2 cells.

(H) The growth curves of LO2 cells were measured after silencing circCDYL2 using MTS assays.

(legend continued on next page)
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sequence using Sanger sequencing and RNase R resistance

analysis (Figure S7A). Detection of circCDYL2 on nuclear and

cytoplasmic RNA showed that this circRNA was located pre-

dominantly in the cytoplasm (Figure 7B). Additionally, knock-

down analysis on the LO2 cell line revealed that the expression

profile of circCDYL2 was independent of the corresponding

parental gene (Figure S7B). We next confirmed the interactions

of circCDYL2 on the network using pull-down experiments. Us-

ing mass spectrometry (Figure S7C), we successfully identified

five proteins interacting with circCDYL2, three of which were

confirmed by the co-expression network (Figure 7C), demon-

strating a high level of accuracy of the network. One of the iden-

tified proteins was parafibromin, a tumor suppressor that inhibits

cancer cell growth (Zhang et al., 2006). The connection of

circCDYL2 with this protein suggests that this circular transcript

may be involved in the biological process of suppressing cancer.

Indeed, by quantifying circCDYL2 expression levels using RT-

PCR in 105 pairs of cancer and normal liver samples, we found

that the levels of circCDYL2 in tumor specimen were significantly

lower than in the adjacent benign tissue, which is consistent with

the RNA-seq analysis (Figure 7C). The Kaplan-Meier survival

curve revealed that downregulated circCDYL2 level was associ-

ated with poor survival in liver cancer patients (Figure 7D).

Furthermore, our results showed that levels of circCDYL2

were downregulated in cancerous cell lines compared with

normal cell lines (Figure 7E), suggesting circCDYL2 may corre-

late with liver cancer progression. To further understand the

biological function of circCDYL2, we performed knockdown

and overexpression experiments on the LO2 and Huh7 cell lines,

respectively. Subsequently, the effects of circCDYL2 on cell

proliferation and migration were examined. Downregulation of

circCDYL2 by two short hairpin RNAs (shRNAs) targeting the

junction sites of circCDYL2 significantly enhanced cell prolifera-

tion and migratory capabilities (Figures 7G and 7H), whereas

overexpression of this circular transcript in the cancerous cell

line (Huh7) exhibited the opposite trend (Figures 7I and 7J).

Taken together, these results suggest that circCDYL2 may play

a role in maintaining normal cell functions and a dysregulated

level may be involved in liver tumorigenesis. Although further ex-

periments are needed to elucidate its function, this study illus-

trates how the prior knowledge of co-expression networks,

enabled by the evolutionary perspective of this study, can prior-

itize functional circRNAs and stimulate further investigations.

DISCUSSION

In this study, we explored and characterized expanded tran-

scription landscapes from human, macaque, and mouse. We

discovered totals of 104,388, 96,675, and 82,321 highly confi-

dent circRNAs from the three species, and 71,112, 77,812, and

56,769 were successfully assembled into full-length circRNAs,

respectively. On the basis of these datasets, we comprehen-
(I) Proliferation, migration, and colony formation assay of the control Huh7 cells o

order as those in the Figure 7G.

(J) The growth curves of Huh7 cells were measured after overexpressing circCD

Data in (F)–(J) are presented as mean value ± SD of three independent experime

significance in and between indicated groups in (F)–(J). See also Figure S7 and T
sively investigated the expression pattern and evolutionary

conservation of circRNAs and identified 70,186 evolutionarily

conserved circRNAs and elaborated their importance. We also

constructed networks to assign functional annotations and prior-

itize promising functional circRNA candidates using liver cancer

datasets.

Advances in transcriptome sequencing are leading to a

deeper understanding of the intricate nature of transcription by

identifying a vast number of noncoding RNAs. Recent efforts in

the discovery and characterization of circRNAs have resulted

in a wealth of data and extended our knowledge of circRNAs,

including their composition, expression, and modification (Gao

et al., 2016; Yang et al., 2017b). However, current knowledge

on circRNAs is far from adequate. High-throughput characteriza-

tion efforts have thus far been confined to limited tissues from

a few species, cell lines, and cancer types. Considering that

circRNAs are highly species and tissue specific (e.g., as many

as 64% of circRNAs in our study are present in only one tissue),

existing identification efforts may not necessarily be considered

comprehensive. Therefore, it is difficult to discover and recog-

nize functional circRNAs without knowing their expression

landscape in a particular organism or tissue. Here, we generated

132 RNA-seq libraries from 44 normal tissues from human, ma-

caque, and mouse comprising more than 1.8 TB of sequencing

data. This huge dataset provides the broadest collection of

normal tissues for circRNA studies thus far and is at least one

order of magnitude larger than those used in previous studies.

Furthermore, this dataset involves three types of RNA-seq

libraries—RiboMinus/RNase R, poly(A), and RiboMinus—which

outnumber previous circRNA-related studies, of which most

only contained RiboMinus/RNase R libraries. The types of

libraries used in this study will not only facilitate the sensitive

detection of circRNAs but will also enable accurate quantifica-

tion between circRNAs and their parental genes. For example,

we identified an average of 117,035 circRNAs for each species

and discovered 10,698 human circRNAs that are more abundant

than their parental genes in at least one tissue. More important,

we leveraged these datasets to identify approximately 61,956

full-length circRNAs for each species. These full-length circular

transcripts provide, for the first time, a comprehensive view of

circRNAs in mammals and enable an improved understanding

of the composition of these circular transcripts.

The large-scale transcription characterization provides an op-

portunity to compare the properties of circular and linear noncod-

ing transcripts. In this study, we found that both circRNAs

and lincRNAs are transcribed at low levels, are highly tissue

specific, are preferentially expressed, and evolve rapidly, which

is in agreement with previous investigations (Necsulea and

Kaessmann, 2014; Necsulea et al., 2014). However, circRNAs

differ from lincRNAs in several aspects. First, there are far more

circRNAs than lncRNAs. For example, we identified approxi-

mately 139,000 circRNAs in human, which is twice as many as
r circCDYL2 stably overexpressed Huh7 cells. The subgraphs have the same

YL2 using MTS assays.

nts. The two-tailed unpaired Student’s t test was used to determine statistical

able S7.
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in all currently known lncRNAs reported in the MiTranscriptome

assembly project (58,648) (Iyer et al., 2015). Furthermore, ES,

A3SS, A5SS, and intron retention (IR) events occur more

frequently in circRNAs. In human, for example, these four types

of alternative splicing events account for approximately 57% of

all circRNA alternative splicing events, whereas the number is

only 26% in lincRNAs. Second, although both circRNAs and

lincRNAs are transcribed at low levels, several circRNAs have

extraordinarily high expression levels, such as the circRNAs

generated from CDR1 and RIMS1. Among the top 1,000 most

abundant RNAs, the number of circRNAs is greater than that of

lincRNAs in most tissues. More important, circRNAs exhibit

remarkably decreased levels of expression variance across

different human individuals relative to lincRNAs but comparable

levels to mRNAs, indicating that circRNA expression is under

tight regulation rather than being stochastic. Finally, compared

with lincRNAs, OO-type circRNAs exhibit increased levels of

exon boundary conservation and conserved splicing patterns.

Collectively, these findings indicate that the circRNA transcrip-

tome is far more complex than the lincRNA transcriptome and

highlight its potential roles in various biological processes.

Although high-throughput sequencing greatly facilitates the

accumulation of identified circRNAs, there is a substantial gap

between the growing number of circRNAs and our ability to char-

acterize their functions. Indeed, among the 351,105 circRNAs

identified in this study, fewer than 0.1% have been individually

characterized. Therefore, high-throughput screening of func-

tionally important circRNAs is an essential step toward under-

standing their functions. Evolutionary conservation analysis

has often been used to prioritize noncoding RNAs for functional

studies, but this analysis is hampered by an inability to determine

circRNAs’ complete sequences. Current methods are only able

to obtain the BSJ sites of circRNAs rather than their full-length

sequences. In this study, we constructed long-insert (400–

800 bp) RNA-seq libraries combined with longer reads (2 3

PE250) and high sequencing depth (10 + 25 GB per sample)

for all 34 tissues, which greatly facilitated the reconstruction of

their full sequences. On the basis of the full-length circRNAs,

we identified a subset of highly conserved OO-type circRNAs

that exhibit a higher level of conservation than other orthologous

circRNAs in terms of expression level, junction ratio, tissue

specificity, and functional enrichment. We also incorporated

two types of networks to maximize the prioritization power of

these datasets by assigning putative functions to circRNAs

on the basis of their connected genes and screening prom-

ising candidates in light of their topological characteristics. The

gene knockdown experiments showed high levels of concor-

dance between changes in expression and network prediction.

By using these networks, we provide functional annotations

for thousands of circRNAs, representing a promising resource

for large-scale functional studies of circRNAs. Moreover, the

well-established prior knowledge of the networks greatly facili-

tates screening true functional candidates. By testing on the

datasets from liver cancer samples, we demonstrated that

compared with the methods that simply choose top differen-

tially expressed candidates, improved accuracy was achieved

when prioritizing candidate circRNAs in the context of the

networks.
3458 Cell Reports 26, 3444–3460, March 19, 2019
Our study explored the landscape of circRNAs in human, ma-

caque, and mouse; systematically elucidated their diversities

in various tissues; and greatly expanded our knowledge of

circRNAs on a genome-wide scale. Moreover, our work has

generated awealth of datasets that provide an essential resource

for future functional studies. To allow the scientific community to

explore these circRNAs, we developed an online portal, circAtlas,

whichwill provide a foundation for circRNA studies and serve as a

powerful starting point to investigate their biological importance.

STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:

d KEY RESOURCES TABLE

d CONTACT FOR REAGENT AND RESOURCE SHARING

d EXPERIMENTAL MODEL AND SUBJECT DETAILS
B Sample collection

B Cell lines

d METHOD DETAILS

B RNA extraction, library construction and sequencing

B RNA isolation, RNase R resistance analysis, RT-PCR

and comparisons with other tools

B RNA overexpression and knockdown assay

B Reverse transcription PCR and quantitative real-time

qPCR

B Cell transfection and proliferation, colony formation

and migration assays

B RNA pull-down assay

d QUANTIFICATION AND STATISTICAL ANALYSIS

B CircRNA detection and full-length circRNA assembly

B Reference genome, gene expression analysis and

functional enrichment

B Identification of orthologous genes that express orthol-

ogous circRNAs

B Overlapped orthologous circRNA identification

B Species-specific co-expression network construction

and analysis

B Conserved co-expression network construction

d DATA AND SOFTWARE AVAILABILITY

SUPPLEMENTAL INFORMATION

Supplemental Information can be found with this article online at https://doi.

org/10.1016/j.celrep.2019.02.078.

ACKNOWLEDGMENTS

This work was supported by grants from the Beijing Natural Science Founda-

tion (JQ18020), the National Natural Science Foundation of China (31722031,

31701148, 91640117, 31671364, and 91531306), the National Key R&D Pro-

gram (2018YFC0910400), and the Strategic Priority Research Program of

the Chinese Academy of Sciences (XDB13000000).

AUTHOR CONTRIBUTIONS

F.Z. conceived the project and designed the approach. P.J., W.W., H.C., and

Y.Z. analyzed the data. S.C. sequenced the samples and performed the exper-

iments. L.Z. and W.W. designed the web portal. J.Y., S.Z., and P.Y.

https://doi.org/10.1016/j.celrep.2019.02.078
https://doi.org/10.1016/j.celrep.2019.02.078


contributed liver cancer samples for survival analysis. F.Z. and P.J. wrote the

manuscript.

DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: October 2, 2018

Revised: January 18, 2019

Accepted: February 20, 2019

Published: March 19, 2019

REFERENCES

Aktasx, T., Avsxar Ilık, _I., Maticzka, D., Bhardwaj, V., Pessoa Rodrigues, C., Mit-

tler, G., Manke, T., Backofen, R., and Akhtar, A. (2017). DHX9 suppresses RNA

processing defects originating from the Alu invasion of the human genome.

Nature 544, 115–119.

Chen, X., Han, P., Zhou, T., Guo, X., Song, X., and Li, Y. (2016). circRNADb: A

comprehensive database for human circular RNAs with protein-coding anno-

tations. Sci. Rep. 6, 34985.

Chen, Y.G., Satpathy, A.T., and Chang, H.Y. (2017). Gene regulation in the

immune system by long noncoding RNAs. Nat. Immunol. 18, 962–972.

Cheng, J., Metge, F., and Dieterich, C. (2016). Specific identification and quan-

tification of circular RNAs from sequencing data. Bioinformatics 32, 1094–

1096.

Conn, S.J., Pillman, K.A., Toubia, J., Conn, V.M., Salmanidis, M., Phillips, C.A.,

Roslan, S., Schreiber, A.W., Gregory, P.A., and Goodall, G.J. (2015). The RNA

binding protein quaking regulates formation of circRNAs. Cell 160, 1125–1134.

Fei, T., Chen, Y., Xiao, T., Li, W., Cato, L., Zhang, P., Cotter, M.B., Bowden, M.,

Lis, R.T., Zhao, S.G., et al. (2017). Genome-wide CRISPR screen identifies

HNRNPL as a prostate cancer dependency regulating RNA splicing. Proc.

Natl. Acad. Sci. U S A 114, E5207–E5215.

Gao, Y., and Zhao, F. (2018). Computational strategies for exploring circular

RNAs. Trends Genet. 34, 389–400.

Gao, Y., Wang, J., and Zhao, F. (2015). CIRI: an efficient and unbiased algo-

rithm for de novo circular RNA identification. Genome Biol. 16, 4.

Gao, Y., Wang, J., Zheng, Y., Zhang, J., Chen, S., and Zhao, F. (2016).

Comprehensive identification of internal structure and alternative splicing

events in circular RNAs. Nat. Commun. 7, 12060.

Gao, Y., Zhang, J., and Zhao, F. (2018). Circular RNA identification based on

multiple seed matching. Brief. Bioinform. 19, 803–810.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Biological Samples

Human Total RNA Master Panel Clontech, Palo Alto, CA Cat# 636643

Deposited Data

Human liver transcriptomic data Raw sequencing datasets from the paper GEO: GSE77509

Human stomach transcriptomic data Raw sequencing datasets from the paper GEO: GSE69360

13 time-series rRNA-depleted and 4-thiouridine

(4sU)-labeled RNA-seq datasets of mouse immune

dendritic cells during the LPS response

Raw sequencing datasets from the paper GEO: GSE56977

Mouse DHX9 gene kockdown transcriptomic datasets Raw sequencing datasets from the paper GEO: GSE85164

Mouse QKI gene kockdown transcriptomic datasets Raw sequencing datasets from the paper SRA: ERS640281

RiboMinus treated RNA-seq datasets of tumor and

NAT tissue from 20 HCC patients

Raw sequencing datasets from the paper SRA: from SRX1558026 to SRX1558064

RNA-seq datasets of multiple tissue samples from

human, macaque and mouse.

This study BIGD ID: PRJCA000751

Experimental Models: Cell Lines

HEK293T ATCC Cat#CRL-3216

CCC-HEL-1 ATCC Cat#BJ-X0027

LO2 ATCC Cat#CRL-2706

Huh7 Yu Bo Biotech Cat#YB-H1900

HepG2 ATCC Cat#HB-8065

Experimental Models: organisms and strains

Male adult macaque Kunming Primate Research Center at the

Chinese Academy of Sciences (KPRC)

N/A

Female adult macaque Kunming Primate Research Center at the

Chinese Academy of Sciences (KPRC)

N/A

Male adult mouse Beijing Institutes of Life Science N/A

Oligonucleotides

For oligonucleotide sequence information,

see Table S1

This study N/A

Software and Algorithms

CIRI-full Version 2.0 Zheng et al., 2019 https://sourceforge.net/projects/ciri-full

CIRI Version 2.0 Gao et al., 2018 https://sourceforge.net/projects/ciri

CIRI-AS Version 1.2 Gao et al., 2016 https://sourceforge.net/projects/ciri

DCC version 0.4.6 Cheng et al., 2016 https://github.com/dieterich-lab/DCC

CIRCexplorer version 2.3.0 Zhang et al., 2016 https://github.com/YangLab/

CIRCexplorer

MapSplice version 2.1.8 Wang et al., 2010 http://www.netlab.uky.edu/p/bioinfo/

MapSplice2

HISAT2 version 2.1.0 Kim, et al., 2015 https://ccb.jhu.edu/software/hisat2/

StringTie version 1.3.3b Pertea et al., 2015 https://ccb.jhu.edu/software/stringtie/

ClusterProfiler Yu, et al., 2012 https://github.com/GuangchuangYu/

clusterProfiler

CircAtlas This study http://circatlas.biols.ac.cn/
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CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by Prof. Fangqing Zhao (zhfq@

biols.ac.cn) and Dr. Peifeng Ji (jipeifeng@biols.ac.cn).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Sample collection
Seventeen human samples (Clontech, Palo Alto, CA) were used in this study, including brain, testis, thymus, spleen, spinal cord,

kidney, uterus, prostate, heart, lung, liver, colon, bone marrow, small intestine, skeletal muscle, stomach and placenta. Macaque

tissue samples were systematically collected from well-characterized rhesus monkeys born and raised at the Kunming Primate

Research Center at the Chinese Academy of Sciences (KPRC) in outdoor, 6-acre enclosures that provide a naturalistic setting

and a normal social environment. Eleven specimens from one male adult macaque (4 years of age) were collected, including brain,

testis, spleen, spinal cord, kidney, prostate, heart, lung, liver, stomach and pancreas. Moreover, uterus samples were collected from

one female adult macaque at 13 years of age. Mouse tissue samples were collected from one male adult mouse at the Beijing

Institutes of Life Science. Fourteen samples were collected, including brain, testis, thymus, spleen, spinal cord, kidney, prostate,

heart, lung, liver, colon, small intestine, skeletal muscle and stomach. All animal procedures were in strict accordance with the guide-

lines from the National Care and Use of Animals approved by the National Animal Research Authority (P.R. China) and the Institutional

Animal Care and Use Committee (IACUC) of the Kunming Institute of Zoology of Chinese Academy of Sciences. The non-human

primate care and experimental protocols were approved by the Ethics Committee of Kunming Institute of Zoology and the Kunming

Primate ResearchCenter, Chinese Academy of Sciences (AAALAC accredited), and themethodswere performed in accordancewith

the approved guidelines.

Cell lines
HeLa (female, Homo sapiens cervical cancer), HEK293T (male, Homo sapiens kidney), CCC-HEL-1 (unknown sex, Homo sapiens

embryonic liver cells), LO2 (male, Homo sapiens hepatic cell), Huh7 (male, Homo sapiens liver cancer) and HepG2 (male, Homo

sapiens liver cancer) cells were cultured at 37�C in an incubator containing 5%CO2 in Dulbecco’s modified Eagle’s medium (GIBCO,

USA) supplemented with 10% fetal bovine serum (GIBCO, USA) and 1% penicillin-streptomycin (GIBCO, USA). Cells were

transfected with plasmids using HieffTrans Liposomal Transfection Reagent (YEASEN, China) according to manufacturer’s protocol.

All cells were cultured at 37�C in 5% CO2 and tested routinely for Mycoplasma contamination.

METHOD DETAILS

RNA extraction, library construction and sequencing
For each human, macaque and mouse tissue, total RNA was isolated using TRIZOL (Invitrogen, Carlsbad, CA). The RNA concentra-

tion and quality were determined with NanoDrop, Qubit and Agilent 2100 instruments. Total RNA was then divided into three

replicates containing equal amounts of RNA to construct three types of cDNA libraries. Specifically, a RiboMinus kit (KAPA,

USA) was used to deplete ribosomal RNA in these replicates, one of which was further incubated at 37�C with 10 U mg-1 RNase R

(Epicenter, Madison, WI). rRNA- and rRNA-/RNAase R-treated samples were used as templates for separate cDNA libraries

following the TruSeq protocol (Illumina, San Diego, CA), while another total RNA replicate was used to prepare a poly(A)-

selected library following the TruSeq v2 guide. The first two libraries were then sequenced on the Illumina HiSeq 2500 platform at

the Research Facility Center at Beijing Institutes of Life Science, CAS, with PE250 kits. The poly(A)-selected libraries were sequenced

using PE150 kits. The sequence data were submitted to public databases and will be released upon the acceptance of this

manuscript.

RNA isolation, RNase R resistance analysis, RT-PCR and comparisons with other tools
Total RNA of mouse brain sample was isolated using TRIZOL. RNA concentration and quality were determined by NanoDrop, Qubit

and Agilent 2100. Then, cDNA was synthesized using a SuperScript III first-strand kit (Invitrogen) with random hexamers as primers

for all three samples. Outward-facing primer sets (Table S1) were designed for circRNA candidates identified by PCR reactions were

performed for the three cDNA samples using 35 cycles. PCR products were directly sequenced to validate circularity.

We applied a similar criterion that was used in CIRI2 paper to evaluate candidate circRNAs with BSJ-read count > 3 in the dataset

without RNase R treatment. Specifically, circRNAs were labeled as enriched if a 3-fold increase of BSJ-read count was observed

after RNase R treatment. In contrast, candidate circRNAs not detected after RNase R treatment were labeled as depleted. Otherwise,

they were classified as unaffected. We also detected circRNAs from the tissue samples of the three species using DCC (v0.4.6),

CIRCexplorer (v2.3.0) andMapSplice (v2.1.8). Furthermore, we deposited the predicted circRNAs to the circAtlas database for users

to access our data.
e2 Cell Reports 26, 3444–3460.e1–e5, March 19, 2019

mailto:zhfq@biols.ac.cn
mailto:zhfq@biols.ac.cn
mailto:jipeifeng@biols.ac.cn


RNA overexpression and knockdown assay
To overexpress circCDYL2 in liver cell lines, the genomic region of circCDYL2 with two flanking introns (see Table S7) were amplified

by PCR from HEK293T cells. Resulting products were cloned into BamHI and NotI sites of pCDNA3.1+ vector. Huh7 cells were

transfected with recombinant plasmid and selected with G418 (300 mg/ml). cDNA oligonucleotides suppressing gene expression

were synthesized (sequences are available in Table S7), annealed and inserted into BamHI and EcoRI sites of pSIHI-H1-puro vector

(System Biosciences, Mountain View, CA, USA). To produce lentivirus expressing shRNAs, HEK293T cells were co-transfected with

the recombinant vector described above, pCMV-VSV-G and pCMV-dR8.2 dvpr vectors. After 48 hours, supernatants containing

lentivirus were harvested and filtered through 0.45 mmfilters. HeLa and LO2 cells were infected by lentivirus for 48 hours and selected

with puromycin (1.5 mg/ml).

Reverse transcription PCR and quantitative real-time qPCR
First-strand cDNA was synthesized with random primer using the FastKing RT kit (Tiangen, China) according to the manufacturer’s

instruction. Primers for circ-CDYL2, TRA2B, PTBP1, MBNL1 are available in Table S7. Real-time qPCR was performed in the

StepOne Plus Real-time PCR system (Applied Biosystem, USA) Using Hieff qPCR SYBRGreenMaster Mix (YEASEN, China) accord-

ing to the manufacturer’s instruction. The relative expression of RNA was calculated using comparative Ct method.

Cell transfection and proliferation, colony formation and migration assays
Cells were transfected with plasmids using HieffTrans Liposomal Transfection Reagent (YEASEN, China) according to manufac-

turer’s protocol. For cell proliferation assays, 2500 cells were seeded into 96-well flat-bottomed plates. After 12h of culture, cell

viability was measured using CellTiter 96 Aqueous One Solution Cell Proliferation Assay (Promega, USA). EdU immunofluorescence

staining was performed using Cell-Light EdU Apollo567 In Vitro Kit (RibioBio, China) according to the manufacturer’s instruction. For

colony formation assay, 350 cells were seeded in the 6-well plates and cultured with complete growth medium for 10 days. Clones

were fixed with 4% paraformaldehyde, stained with 0.5% crystal violet and counted. Migration assay was performed in Transwell

chambers with 8-mm polycarbonate membrane. 5 3 104 cells with serum-free medium were seeded into the upper chambers,

complete medium was added to the lower chambers. After culturing for 24h, cells that migrated through membrane were fixed

with 4% paraformaldehyde, stained with 0.5% crystal violet and counted.

RNA pull-down assay
A total of 107 cells were washed by phosphate-buffered saline, lysed in 500 mL cell lysis buffer for western and IP (Beyotime,

China) and centrifuged at 4�C, 12000rpm for 10min. The supernatants were incubated with 3 mg biotin labeled DNA probe (see Table

S7) against circ-CDYL2 or control probe at room temperature for 1h. A total of 30 mL washed Streptavidin C1 magnetic beads

(Invirtogen, USA) were added to each reaction and incubated at room temperature for 1h. beads were washed by cell lysis buffer

for five times. 30 mL elution buffer were added, samples were incubated in boiled water for 10min, and the supernatants were

collected.

QUANTIFICATION AND STATISTICAL ANALYSIS

For cell line experiments, data were shown asmean ± SD, ‘‘n’’ represents the number of samples used. The type of test method used

for statistical analysis was specified in the text where the results were described and details for the test can be found in the relevant

figure legend and method section. All tests were two-sided unless otherwise specified.

CircRNA detection and full-length circRNA assembly
BSJs in the RNA-seq reads were detected using CIRI2, DCC, CIRCexplorer2 and MapSplice with default parameters. Since DCC,

CIRCexplorer2 and MapSplice are specifically designed for short reads (data not shown), sequencing reads for each sample

were trimmed to a length of 150 bp. The single-splice events within these BSJs were inferred with CIRI-AS (v1.2) (parameter -d

yes).Within each BSJ, all cirexons inferred from the single splice events were collected, sorted and recorded. Orthologous alternative

splicing events in related species were determined using the Liftover tool in the UCSC Genome Browser (http://genome.ucsc.edu/

cgi-bin/hgLiftOver), which converts genome coordinates from one species to another.J values were calculated by CIRI-AS. The full-

length circRNA construction was performed using the CIRI-full pipeline (https://sourceforge.net/projects/ciri-full/), which employs

reverse overlapping information for the amplified circular transcripts, where the 50- and 30 ends of paired reads were reversely

overlapped with one another (Gao and Zhao, 2018; Zheng and Zhao, 2018). Expression variation of a given transcript across multiple

individuals was determined using the coefficient of variance, which represents the variance of expression. This score was defined as

the ratio of the standard deviation to the mean expression level.

Reference genome, gene expression analysis and functional enrichment
Analyses in this study were performed on genome version GRCh38 downloaded from GENCODE (https://www.gencodegenes.org/)

for human, GRCm38 downloaded from GENCODE for mouse and Mmul 8.0.1 for macaque downloaded from Ensembl (http://www.

ensembl.org/info/data/ftp/index.html). RiboMinus treated and Poly(A)-enriched RNA-seq datasets were mapped onto the genomes
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using HISAT2 (v2.1.0) (Kim et al., 2015), and gene expression was quantified using StringTie (v1.3.3b) (Pertea et al., 2015) with default

parameters. KEGG pathway enrichment analysis of the genes from which the circRNAs were derived was performed using the

ClusterProfiler (Yu et al., 2012) package.

Identification of orthologous genes that express orthologous circRNAs
circRNAs were first annotated using GTF files to determine their genes of origin. We identified orthologous gene pairs in which both

members can express circRNAs using a pairwise orthologous gene list (a list of one-to-one orthologous gene pairs) downloaded from

the OMA orthology database (http://omabrowser.org). To identify circRNAs that were conserved at the BSJ level between two

species, 50-bp fragments on both sides of the BSJ were extracted from the reference orthologous sequence and used to represent

the BSJ sequence. Then, all circRNA BSJ sequences in one species were aligned to those of the other species using BLAT with

default parameters. The reciprocal best hit strategy was used to find orthologous circRNAs; then, the orthologous circRNAs pairs

with alignment scores < 150 were filtered.

Overlapped orthologous circRNA identification
The complete sequences of the circRNAs in each species were obtained using CIRI-full. circRNA sequences from orthologous genes

from multiple species were aligned with each other using BLAT with default parameters. The reciprocal best hit strategy was then

employed to process the alignment results and determine the orthologous circRNA pairs at the full-length level. If the overlapping

region was larger than 90% of the length of the orthologous circRNAs, they were treated as overlapped orthologous circRNAs

(OO-type). OO-type circRNA pairs were defined as circRNAs that are expressed from orthologous genes and share the same

BSJs in different species. Non-overlapped orthologous (NO-type) circRNAs were also expressed from orthologous genes, but their

BSJ positions differed among species. The expression level of a circRNA was calculated by counting the number of BSJ reads and

normalization based on the total number of BSJ reads.

Species-specific co-expression network construction and analysis
We constructed co-expression networks for circRNAs and protein-coding genes in each species. Similarities between individual

gene expression patterns were determined by computing a Pearson correlation coefficient matrix for gene-to-gene comparisons

and filtering weak correlations, where r < 0.75 for protein-coding gene pairs and r < 0.5 for gene pairs containing circRNAs. To avoid

false positives in the co-expression network analysis, the nodes on the network were restricted to mRNAs or circRNAs expressed in

at least 3 tissues.

To determine the reliability of the network, we performed gene knockdown experiments. We knocked down three RBPs—TRA2B,

MBNL1 and PTBP1—in HeLa cells. We included two publically available gene knockdown datasets, QKI and DHX9, for analysis. The

CIRI pipeline was applied to the knockdown transcriptomic datasets, and the expression levels of circRNAs were normalized. We

used the shared circRNAs between knockdown experiments and the co-expression network to assess whether the direction of

the alternations in the circRNAs after the gene knockdown experiments could be predicted by the network. Specifically, the changes

in circRNAwere calculated. Circular transcripts with an expression fold change > 2 that were shared with the network were extracted

for verification. If a given circRNA is positively correlated with a given gene in the network, after knocking down this gene, the

circRNA’s expression level should show a decreasing tendency and vice versa.

To prioritize disease related circRNAs, we developed a method which ranked candidate circRNAs by considering both circAtlas

networks and circRNA conservation. In detail, we performed random walk algorithm following a previous method (Köhler et al.,

2008), which is defined as the transition of an iterative walker from its current node on the circAtlas network to a randomly selected

neighbor starting at a given source node. After assigning scores to the circRNAs on the network, the candidate circRNAs were then

re-ranked according to their assigned scores and conservation across species according to the formula: SigScore =Conservation*2-

100/log2(assigned score). At last, the scores of candidates were normalized between 1 and 10.

Conserved co-expression network construction
We built an evolutionarily conserved co-expression network for circRNAs and protein-coding genes following a previous method

[36,38], which was used to construct co-expression networks for lncRNAs and protein-coding genes. For each species and for

each pair of genes (circRNA or protein-coding gene), we calculated the Pearson correlation coefficients based on their expression

profiles. Given two genes, we tested whether the combination of the correlation coefficients computed for each species was

significantly higher or lower than expected by chance (p < 0.05). To test the significance, we compared the observed ranks of the

correlation coefficients with random n-dimensional order statistics as described previously [38]. Note that in the original study

presenting the evolutionarily conserved co-expression network reconstruction, negative correlations were discarded. However,

negative correlations of expression profiles are expected for repressor regulatory factors and their downregulated targets. Therefore,

the correlation was considered relevant if the combination of the correlation ranks across all three species was significantly lower

than expected by chance (p < 0.05). We used the FDR method for multiple testing corrections to ensure that the co-expression

relationships obtained were truly biologically relevant. Specifically, for co-expression between pairs of protein-coding genes, we

used an FDR threshold of 0.01, while for pairs of genes including circRNAs, a more relaxed threshold of 0.05 was used to increase

the sensitivity.
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DATA AND SOFTWARE AVAILABILITY

The sequence data generated in this study have been deposited to BIGD with the following accession number: BIGD ID:

PRJCA000751. Datamay be accessed at the following site website: http://bigd.big.ac.cn/bioproject/browse/PRJCA000751. Source

codes can be downloaded at http://circatlas.biols.ac.cn.
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