
ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS

https://doi.org/10.1038/s41467-026-68419-y

Received: 5 August 2025

Accepted: 7 January 2026

Cite this article as: Dong, H., Gao, Y.,
Cai, Z. et al. Comprehensive mapping
of RNA modification dynamics and
crosstalk via deep learning and
nanopore direct RNA-sequencing.
Nat Commun (2026). https://doi.org/
10.1038/s41467-026-68419-y

Han Dong, Yongsheng Gao, Zhengyi Cai, Yi Li, Xing Li, Fangqing Zhao & Jinyang Zhang

We are providing an unedited version of this manuscript to give early access to its
findings. Before final publication, the manuscript will undergo further editing. Please
note there may be errors present which affect the content, and all legal disclaimers
apply.

If this paper is publishing under a Transparent Peer Review model then Peer
Review reports will publish with the final article.

© The Author(s) 2026. Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not
have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Nature Communications
Article in Press

Comprehensive mapping of RNA modification
dynamics and crosstalk via deep learning and
nanopore direct RNA-sequencing



ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS

 

 

Comprehensive mapping of RNA modification dynamics and crosstalk via deep learning and 

nanopore direct RNA-sequencing 

 

Han Dong1,2, Yongsheng Gao1,2, Zhengyi Cai1,2, Yi Li1, Xing Li1,2*, Fangqing Zhao1,2,3,*, Jinyang 

Zhang1,* 

 
1State Key Laboratory of Animal Biodiversity Conservation and Integrated Pest Management, 

Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China 
2University of Chinese Academy of Sciences, Beijing 100049, China 
3Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of 

Chinese Academy of Sciences, Hangzhou, China 

 
*Corresponding authors: zhangjinyang@ioz.ac.cn (JZ); zhfq@ioz.ac.cn (FZ); li@ioz.ac.cn (XL) 

 

  



ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS

 

 

Abstract 

Despite the extensive studies of individual RNA modifications, the lack of methods to detect 

multiple modification types simultaneously has left the global epitranscriptomic landscape and its 

underlying crosstalk largely unexplored. Here, we present ORCA (Omni-RNA modification 

Characterization and Annotation), a deep learning framework that enables comprehensive 

mapping of RNA modification landscape using nanopore direct RNA sequencing. ORCA employs 

domain adversarial learning to detect and quantify a wide range of modifications by leveraging 

mixed stoichiometry-driven signal and sequence variability between modified and unmodified 

nucleotides. It also incorporates a transfer learning module for accurate annotation of modification 

types with minimal prior knowledge. Applying ORCA to multiple human cell lines reveals 

widespread, isoform-specific modification patterns, as well as intricate cooperative and 

competitive interactions among neighboring modification sites. This approach substantially 

expands the repertoire of known RNA modification sites and elucidates their spatial organization, 

revealing the emerging roles of RNA modifications in splicing regulation. ORCA thus provides 

an unbiased and generalizable framework for decoding RNA modification dynamics and their 

regulatory complexity across diverse biological contexts. 

 

Introduction 

RNA modifications represent a complex and dynamic layer of post-transcriptional regulation, with 

over 170 distinct chemical marks that regulates RNA stability1, splicing2, 3, translation4, 5, and 

subcellular localization6. While the functions of individual modification such as N6-

methyladenosine (m6A), pseudouridine (Ψ), and 5-methylcytosine (m5C) have been extensively 

studied7, 8, the combinatorial effects and crosstalk among different RNA modifications remain 

largely unexplored. Recent studies have revealed the coordinated roles for m6A and Ψ in 

modulating translation9, and a synergistic co-occurrence of m6A and m5C in plants under salt 

stress10, highlighting the emerging role of interaction between different modifications. 

Deciphering these interactions is crucial for understanding the multilayered regulatory 

mechanisms governing RNA biogenesis and function. However, progress in this area has been 

hindered by the lack of transcriptome-wide tools capable of simultaneously detecting and 

analyzing diverse RNA modifications and their interactions, limiting our ability to decode the full 

regulatory potential of the epitranscriptome. 

Recent Illumina-based approaches using immunoprecipitation11-13 or chemical treatment14-17 

have enabled transcriptome-wide profiling of individual RNA modification types, but are unable 

to capture the global epitranscriptomic landscape simultaneously8. Nanopore direct RNA 

sequencing (DRS) overcomes this limitation by directly sequencing native RNA molecules and 

recording ionic current signals that reflect each nucleotide’s chemical structure18, 19. These inherent 

signals produce distinct ionic signal profiles and basecalling differences between modified and 

unmodified bases, encoding rich information about various RNA modifications within single 
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molecules20. However, most existing DRS-based tools are either trained on in vitro synthesized 

datasets that are restricted to a few well-characterized modifications such as m6A9, 10, 21-25, m5C10, 

23, 26 and Ψ9, 10, 20, 27, or rely on comparative analyses to detect condition-specific modification 

changes21, 23, 28, 29. Both strategies are unable to resolve the full spectrum of endogenous RNA 

modifications or reveal their complex interactions. While a few attempts have been made to 

simultaneously identify multiple RNA modifications and their associations9, 10, these models 

remain constrained by the narrow scope of in vitro synthesized modification types, which limits 

their generalizability to unseen or uncharacterized modifications. Thus, the systematic and 

unbiased characterization of the full epitranscriptomic landscape and its underlying regulatory 

crosstalk remains a fundamental challenge. 

 To address these limitations, we present ORCA (Omni-RNA modification Characterization 

and Annotation), a deep learning framework for comprehensive profiling of RNA modifications 

and their interactions at isoform and single-molecule resolution. ORCA employs an adversarial 

learning strategy to capture both signal- and sequence-level variations arising from the mixed 

stoichiometry of modified and unmodified nucleotides, thereby overcoming the limited detection 

scope of current DRS-based approaches. Extensive benchmarking shows that ORCA serves as a 

powerful tool for unbiased detection and stoichiometric quantification of RNA modifications, even 

for modification types absent from the training data, demonstrating ORCA’s broad generalizability 

across diverse modification types. Applying ORCA to human cell lines, we expand the known 

repertoire of RNA modification sites and uncover the widespread interactions among different 

modifications across transcript isoforms. Notably, ORCA reveal intricate cooperative and 

competitive relationships between neighboring modification sites, suggesting the complex 

crosstalk between RNA modifications and splicing regulation. Collectively, ORCA provides a 

robust and versatile approach for mapping the full spectrum of RNA modifications, revealing the 

regulatory complexity and isoform-specific crosstalk in the eukaryotic epitranscriptome. 

 

Results 

Deep-learning based detection and annotation of various RNA modifications from direct 

RNA-seq data 

To enable generalized detection of diverse RNA modifications from nanopore direct RNA-seq 

data, we developed a deep-learning framework (ORCA) to systematically identify multiple RNA 

modification types. Briefly, ORCA first aggregates the raw current signals and basecalled 

sequences from all reads aligned to a given genomic region, focusing on a 9-nucleotide window 

centered on each candidate site (Fig.1a and Methods). Since RNA modifications exhibit mixed 

stoichiometry17, 30, where not all copies of a given base are modified, modified positions should be 

characterized by elevated skewness in signal intensity distributions and increased basecalling 

errors (Supplementary Fig. 1). Thus, ORCA employes these polymorphic features to detect the 
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presence of RNA modifications across the transcriptome. Afterwards, ORCA integrates prior 

knowledge from established RNA modification databases for effective annotation of a wide range 

of modification types. 

 To accurately predict the presence of RNA modifications based on signal- and base-level 

features, we first constructed a robust and diverse training set comprising six types of RNA 

modifications from the in vitro synthetic ELIGOS sequences31 (Fig. 1b). Synthetic transcripts 

containing one of the six modified bases (m6A, m5C, Ψ, m1A, hm5C, and 5fC) or four canonical 

bases were randomly sampled and combined to simulate varying stoichiometries and sequencing 

depths (Methods). To mitigate k-mer bias from the limited sequence diversity of the ELIGOS 

sequences10, raw sequence or absolute current levels features were deliberately excluded to ensure 

that these features could represent generalized modification status without sequence preference. In 

total, over 7,000,000 sites were generated, with positions containing >10% modified transcripts 

designated as the positive set15. To develop a generalized model capable of accurately predicting 

diverse RNA modifications without being restricted to specific types, we implemented a domain 

adversarial learning framework32 (Fig. 1b). Here, a feature encoder comprising two LSTM layers 

that process the sequence in opposite directions was trained to capture contextual and sequential 

features and predict modification presence (modScore) and stoichiometry. Notably, a domain 

classifier was adversarially trained to minimize the models’ ability to discriminate between 

different modifications using the encoder’s output (Methods). This adversarial training strategy 

forced the encoder to learn generalized features that are shared across modifications, ensuring 

robust representation of modification status beyond training types while suppressing over-fitting 

to the modification types used for training. 

 Considering occurrence of the same RNA modification across different transcriptomic 

positions often share conserved sequence contexts or signal patterns15, 33, we implemented a 

transfer-learning strategy for modification type annotation (Fig. 1c). First, an autoencoder was 

trained to project all predicted modification sites into a low-dimensional embedding space using 

both signal- and base-level features, as well as k-mer frequency profiles that capture motif 

preference of modification sites. These modification sites were then provisionally annotated using 

public RNA modification databases (RMBase v3.034 and DirectRMDB35). Subsequently, the 

model was fine-tuned to predict the type of annotated modification sites, with unannotated sites 

randomly sampled as negative controls to reject low-confidence predictions and suppress false 

discoveries. Finally, the classifier’s predictions were transferred to all unannotated sites, enabling 

comprehensive and rigorous identification of unannotated RNA modification sites while 

minimizing dependence on pre-label training data. This framework ensures that ORCA can 

achieve stringent modification sites identification and annotation, with inherent flexibility to 

integrate new modification types with the emerging updates of RNA modification resources36, 37. 
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Performance evaluation of RNA modification detection 

To evaluate ORCA’s performance in detecting various RNA modifications, we first assessed its 

sensitivity and accuracy using the synthetic ELIGOS dataset31. Training datasets for six in vitro 

synthesized modifications were generated as described above, and 5-fold cross-validation was 

applied to evaluate prediction accuracy across modification types. As shown in Fig. 2a and 

Supplementary Fig. 2a, ORCA achieved high recall and precision across all six modifications, 

with an average area under the precision-recall curve (AUPRC) of 0.95 and average area under the 

receiver operating characteristic curve (AUROC) of 0.94. To quantify the overall performance, we 

further calculated the F1-score, which balances sensitivity and false discovery rate (FDR) (Fig. 

2b). Across all modification types, ORCA consistently attained high F1-scores (0.971-0.976), 

reflecting its reliable and accurate detection capability. Given that modified sites represent only a 

small fraction of the transcriptome, we further estimated the false discovery rate of ORCA using 

an in vitro transcribed (IVT) human mRNA transcriptome31 devoid of endogenous modifications. 

As shown in Fig. 2c, ORCA exhibited a low false discovery rate of 2.25% using the default 

threshold (modScore > 0.9), demonstrating superior false discovery scores compared with multi-

modification detection tools and comparable performance relative to several modification-specific 

methods (Supplementary Fig. 2b). In addition, ORCA demonstrated robust stoichiometry 

prediction (Supplementary Fig. 2c), showing its ability to accurately quantify diverse RNA 

modifications using the integrated signal- and base-level features, Together, these results 

suggested that ORCA provides accurate and unbiased prediction of multiple RNA modification 

types. 

 To assess the performance of ORCA in real-world transcriptomes, we benchmarked its ability 

to detect m6A modifications using DRS data from Mettl3 knockout (KO) and wild-type (WT) 

mouse embryonic stem cells31. We applied ORCA to predict modification sites in individual 

samples and analyzed site-specific differential modification levels after Mettl3 knockout 

(Methods). As shown in Fig. 2d, Mettl3-KO cells exhibited a significant global reduction in RNA 

modification, with 17.58% of modification sites showed > 0.2 stoichiometric reduction. In contrast, 

only 5.78% of sites retained increased modification stoichiometries, consistent with Mettl3’s role 

as a primary m6A methyltransferase. For comparison, we evaluated both typical m6A-specific 

models (CHEUI-solo23, EpiNano-SVM31, m6Anet22 & TandemMod10) and comparative-based 

methods (CHEUI-diff23, EpiNano-Error21, Nanocompore29 & xPore28) for detecting differential 

m6A sites. The m6A sites identified by miCLIP212 and GLORI15 were collected as ground truth 

benchmarks. To ensure a fair comparison between m6A-specific and comparative-based tools, the 

performance of m6A prediction was evaluated at both single-base level (only adenosine within 

DRACH motifs was considered modified) and 5-mer level (all nucleotides within DRACH motifs 

were treated as modified) respectively38. ORCA achieved an AUPRC of 0.42 at single-base level 

(Supplementary Fig. 2d) and 0.43 at 5-mer level (Fig. 2e), matching the performance of state-of-
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the-art m6A-specific and comparative-based algorithms. Among these top differentially modified 

sites (ranked by change of modScore), ORCA exhibited the highest proportion of sites overlapping 

DRACH motifs or modified 5-mers from m6A sequencing methods (Fig. 2f), confirming its high 

accuracy in identifying the biologically relevant m6A modifications. 

 To further validate the versatility of ORCA, we applied it to detect m5C modifications in HeLa 

cells following NSUN2 knockout23, and then evaluated the performance of ORCA and other tools 

against m5C sites reported by BS-seq39, bsRNA-seq40 and RNA-BisSeq41. For each tool, changes 

in predicted stoichiometry were then calculated, and chi-squared test was employed to measure 

the reduction in m5C sites. Among the m5C sites that consistently detected across two biological 

replicates, ORCA identified a higher proportion of downregulated sites than most existing tools 

(Fig. 2g). While CHEUI-diff reported a marginally higher fraction of downregulated sites, ORCA 

uncovered a significantly larger absolute number of m5C sites with statistically significant 

downregulation (Fig. 2h and Supplementary Fig. 2e), indicating its strong ability to detect NSUN2-

dependent m5C alterations. Beyond m5C, we further tested ORCA’s ability to detect Ψ 

modifications in the ribosomal RNA dataset27. Compared to established tools (Tombo42, 

TandemMod10 and NanoPSU27), ORCA identified comparable high number of validated Ψ sites 

(73/89) to TandemMod (75/89, Fig. 2i) and also showed strong orthogonal overlap with each 

approach (Supplementary Fig. 2f), suggesting its accuracy in Ψ detection. Collectively, these 

results demonstrated ORCA’s capacity as a effective framework for detecting a wide range of 

RNA modifications across different experimental conditions and modification types, including 

m6A, m5C and Ψ, and supported its utility for accurate and robust transcriptome-wide RNA 

modification discovery superior to canonical modification-specific and comparative-based tools. 

 

ORCA enables zero-shot detection of unseen RNA modification types 

A key limitation of current DRS-based RNA modification detection tools is their reliance on 

sophisticated training datasets, which typically derived from in vitro-synthesized transcripts10. 

However, many modification types are challenging to synthesize in vitro43, limiting the 

development of these modification-specific models. To determine whether our strategy is 

applicable to modifications not included in the training set, we comprehensively benchmarked the 

performance of ORCA using three complementary approaches: (1) zero-shot prediction of unseen 

modifications using the ELIGOS dataset, (2) prediction of modifications absent in training set with 

reference RNA modification sequencing data, and (3) evaluation of ribosomal RNA modifications 

from mass spectrometry (MS)-based databases (Fig. 3a). 

 To systematically evaluate the performance of ORCA in detecting unseen RNA modifications, 

we first assessed the precision and recall in zero-shot prediction using synthetic ELIGOS 

sequences31. For each target modification, we iteratively excluded it from the training set and 
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trained ORCA on different combinations of other modifications to evaluate ORCA’s ability to 

generalize from arbitrary subsets to unseen targets. For zero-shot prediction of target modifications 

the absent in training set, ORCA achieved high prediction accuracy ~ 90% across all modification 

types and maintained considerable recall rates > 30% for most modifications (Fig. 3b). Both 

accuracy and recall increased with the inclusion of additional training modification types (Fig. 3b 

and Supplementary Fig. 3a), indicating that ORCA can effectively extract generalized cross-

modification features. In addition, we further evaluated ORCA’s ability to estimate stoichiometry 

for previously unseen modifications. Strikingly, our adversarial learning framework accurately 

encapsulated stoichiometry in the zero-shot prediction of all six modification types, achieving a 

strong linear correlation (average Pearson’s correlation coefficient = 0.76) between predicted and 

ground-truth stoichiometries (Supplementary Fig. 3b). These results confirmed that ORCA can be 

effectively adapted to detect and quantify unseen RNA modifications without requiring prior 

training data for these modification types. 

 To further evaluate ORCA’s ability to predict unseen RNA modifications transcriptome-wide, 

we employed three different high-throughput RNA modification sequencing datasets to validate 

its applicability. First, we performed ONT direct RNA-seq and m6A-SAC-seq17 on the same 

mouse brain sample. To test ORCA’s capacity for zero-shot prediction, m6A was excluded from 

the training set to construct an m6A-absent model, which was then used for transcriptome-wide 

modification prediction. In total, 1,000 m6A sites detected by m6A-SAC-seq were covered in the 

nanopore DRS data, of which 70.5% were confidently predicted as modified (modScore > 0.9) by 

the ORCA model trained without m6A-specific data. Moreover, these identified m6A sites showed 

significantly higher modification probabilities than randomly sampled DRACH motifs (p < 1×

10-308, Wilcoxon rank-sum test; Fig. 3c), confirming ORCA’s capacity to detect transcriptome-

wide m6A without prior training on this modification. 

 Similarly, we further evaluated ORCA’s ability to detect 2’-O-methylation (Nm) and inosine 

(I) modifications which were not included in the training set. For Nm detection, we analyzed public 

DRS data from mESCs cells31 and benchmarked ORCA predictions against Nm sites identified by 

2’-OMe-seq44. As shown in Fig. 3d, ORCA accurately predicted Nm modifications, with 74.4% 

of reference Nm sites successfully identified and an overall significant enrichment of reference 

Nm and random control sites was also observed among ORCA’s prediction (p = 1.30×10-24, 

Wilcoxon rank-sum test). For inosine prediction, we employed public DRS data from wild-type 

and FY-ADAR2 yeast strains engineered to express human ADAR2, which introduce A-to-I 

editing in yeast without an endogenous ADAR system45. A-to-I editing sites was identified as 

reference using Illumina RNA-Seq data from the same project (Methods), and differentially 

modified sites between WT and hADAR2-expressing yeast were identified using ORCA. As 

expected, reference inosine sites showed significantly higher modification scores in hADAR2 

yeast, whereas no such patterns were observed for randomly sampled background adenosines (Fig. 
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3e). Taken together, these results indicated the ability of ORCA to detect previously unseen RNA 

modifications at the transcriptome scale, even in the absence of modification-specific training 

datasets. 

 Given that ribosomal RNA harbors a diverse array of RNA modifications — many of which 

are undetectable by either modification-specific or comparative-based tools (Fig. 3f), we employed 

human and yeast ribosomal RNA sequencing datasets to evaluate ORCA’s performance in 

predicting this broader spectrum of RNA modifications. Across human 28S and 18S rRNAs, 

ORCA successfully identified 78.1% of the 224 modification sites spanning 13 chemically distinct 

modification types (e.g. N4-acetylcytidine (ac4C) and m1acp3Ψ) supported by SILNAS mass 

spectrometry46. In parallel, a low false discovery rate (10.0%) was observed for unmodified bases, 

indicating high specificity in distinguishing modified from unmodified sites. Similarly, ORCA 

achieved comparable performance on yeast 18S and 25S rRNAs, accurately predicting 79.8% of 

orthogonally validated modifications. In additional,  further supporting its robustness in 

identifying a wide range of RNA modification types across species (Supplementary Fig. 3c-d). 

Furthermore, we evaluated ORCA’s ability to detect non-natural 4-thiouridine (4sU) 

modifications. Applying ORCA to K562 4sU pulldown and DMSO control samples47, ORCA 

detected significantly elevated modification scores for U-containg 5-mers in 4sU pulldown 

samples compared with non U-containing controls (p = 1.38×10-20, one-sided Wilcoxon rank-

sum test; Supplementary Fig. 4a). The predicted 4sU levels also strongly correlated with nascent 

RNA expression measured by orthogonal Illumina sequencing (p = 1.67×10-16, Supplementary 

Fig. 4b), demonstrating ORCA’s sensitivity to 4sU incorporation. Taken together, these results 

demonstrate that ORCA can overcome the limitations of modification-specific models, enabling 

transcriptome-wide discovery of unseen RNA modifications through its generalized adversarial 

training strategy. 

 

ORCA uncovers the transcriptome-wide landscape of a broad range of modifications 

The comprehensive identification of diverse RNA modifications is essential for understanding the 

post-transcriptional processing of RNAs. However, current DRS-based tools typically rely on 

modification-specific models that target a limited subset of modifications or utilize comparative 

strategies to detect changes between different condition pairs. These limitations make it 

challenging to profile a broad spectrum of RNA modifications in individual samples. To further 

demonstrate ORCA’s ability to simultaneously detect multiple RNA modifications per sample, we 

applied it to the previously described Mettl3-KO mESCs dataset. All predicted modification sites 

were ranked by modScore and compared against known modification sites in the RMBase 3.0 

database34, as well as sites predicted by modification-specific tools. Among the top-ranked 

predictions, over 40% were supported by either public database or ONT-based RNA modification 
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detection tools (Fig. 4a), indicating the high reliability of ORCA’s prediction. Specifically, a 

comprehensive catalog of well-characterized modifications including m6A, m5C, inosine (I), Ψ, 

m7G, m1A and 2′-O-methylation (Nm) were detected within the top 10,000 predicted sites (Fig. 

4b). For example, 41.9% and 30.9% of predicted sites in mESCs and HeLa cells were supported 

by m6A sites, while 16.1% and 5.2% of sites were supported by Ψ modifications. This high 

concordance underscored ORCA’s ability to accurately resolve multiple RNA modifications in a 

single analysis. 

For instance, ORCA identified adjacent modification sites in the 3’ UTR of the Lars2 

transcript, where one Nm, two m5C and five Ψ modification sites were consistently detected in 

both WT and Mettl3 KO mESCs. Notably, a previously unannotated site exhibited a dramatic 

reduction in modScore upon Mettl3 knockout, suggesting it may represent an unseen m6A site 

(Fig. 4c). Similarly, two m6A sites in the 3’ UTR of Ets2 transcript were robustly detected in WT 

mESCs but were absent in Mettl3 KO samples, consistent with substantial alterations in both 

sequence- and signal-level features following loss of the key m6A methyltransferase complex (Fig. 

4d). Moreover, these predicted sites were also consistently supported by both modification-specific 

and comparative-based algorithms. We further extended this analysis to WT and NSUN2 KO HeLa 

cells. For exemplary modification sites in the 3’ UTR of RPL13A and in the small nuclear RNA 

RNA5-8SN1, ORCA revealed a selective reduction in m5C, but not in m6A or Ψ levels, consistent 

with the specificity of NSUN2 as an m5C methyltransferase41 (Supplementary Fig. 5). Taken 

together, these results demonstrated that ORCA enables the simultaneous detection of diverse 

RNA modifications while accurately resolves biologically relevant stoichiometry changes upon 

perturbation of specific modification writers. 

 

Transfer learning of sequence and signal features enables accurate discovery of previously 

unannotated RNA modification sites. 

Based on accurate modification presence prediction, we further developed a transfer learning 

framework to annotate modification types using both sequence- and signal-level features of high-

confidence sites curated from public databases (Fig. 5a and Methods). In addition to the features 

used for modification presence prediction, we incorporated k-mer occurrence frequencies to 

capture sequence similarity specific to each modification type. Given that chemical modifications 

affect current signals across a 5-6 nucleotide window as the strand passes through the nanopore48, 

a multi-task learning model was implemented to simultaneously predict both modification types 

and positional phase. The prediction results were then filtered based on the consistency between 

predicted modification types and the corrected nucleotide phases, and only predictions where the 

modification types matched the corresponding nucleotide position were retained to ensure accurate 

modification assignment. To avoid over-assignment of uncharacterized modifications to known 

categories, unannotated sites were also sampled as negative controls during training to ensure 



ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS

 

 

stringent and reliable identification of known modifications. Finally, the trained model was 

transferred to predict modification types for previously unannotated sites, enabling the discovery 

of RNA modification sites absent from existing databases. Overall, this approach balances the 

accuracy of modification type prediction with the sensitivity to uncover epitranscriptomic features. 

 To rigorously evaluate the performance of RNA modification annotation, ORCA was 

employed to present modification presence using a K562 DRS dataset from the SGNex project49. 

A total of 48,377 sites across 7 RNA modification types were then annotated with high confidence 

NGS-supported sites from RMBase 3.034 and DirectRMDB35, and the modification annotation 

model was trained as described previously (Fig. 5a). In cross-validation, ORCA achieved > 90% 

precision and > 40% recall for most modification types (Fig. 5c-d), demonstrating robust accuracy 

and sensitivity. To further assess the specificity of modification type prediction, we iteratively 

masked each modification type during training and quantified the misclassification of masked sites 

into other categories. As shown in Fig. 5e and Supplementary Fig. 6a, ORCA maintained an 

average of > 0.83 accuracy across all modification types. Moreover, ablation of the background 

negative-control class markedly increased false discovery (Supplementary Fig. 7), confirming that 

our strategy ensure accurate and stringent modification type prediction while minimize false 

positive assignments of unannotated modifications. 

 The trained model was subsequently applied to predict modification types across all 

unannotated modification sites. In total, 42,449 previously unannotated RNA modification sites 

were identified, whose gene body distributions closely consistent with those in the established 

databases (Fig. 5f). Notably, ORCA largely expanded the catalog of current modification sites, 

annotating 29% additional m6A sites and dramatically increasing the low-abundance 

modifications: > 400% more m5C, Nm, Ψ and inosine, > 1,030% more m7G, and > 178% more 

m1A sites compared to existing annotations (Fig. 5g). To validate these predictions, we then 

performed de novo motif analysis using XSTREME50 on previously unannotated m5C sites. Two 

canonical m5C motifs CUCC (88.3% of ORCA-annotated sites) and CGGG (8.8% of ORCA-

annotated sites) were identified, aligning with known NSUN651 and NSUN2-dependent39 m5C sites. 

For example, ORCA predicted an m5C site in the CDT1 3’ UTR that was absent in both RMBase 

3.0 and DirectRMDB, but was independently validated by UBS-seq16 in HeLa cells (Fig.5i). 

Besides, ORCA also demonstrated high specificity for annotating m6A sites, with 26.9% sites 

supported by GLORI15, which was consistent with the validation rate of database-curated m6A 

sites (37.6%, Supplementary Fig. 6b). For other modifications, high validation rates were also 

observed for Ψ (BID-seq14), m7G (20% overlap with QKI CLIP-seq11 peaks), and m1A (18.5% by 

m1A-seq13) (Supplementary Fig. 6c-e). Taken together, these results demonstrated the 

effectiveness of ORCA’s label-transfer learning strategy in discovering and annotating RNA 

modification sites that were previously unannotated in existing databases with high confidence. 

 Furthermore, we evaluated whether database composition introduces biases associated with 

modification detection technologies or cell line origins. Although cross-technology overlap for the 

four major modification types was generally limited (Supplementary Fig. 8a-b), ORCA’s 
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annotation model trained on individual assays achieved high recall within orthogonal datasets, and 

performance further improved when complementary assays were incorprotatd while maintaining 

low FDR (Supplementary Fig. 8c-d). Consistent results were observed in cross cell-line validation, 

where restricting training to a single cell linereduced annotation sensitivity but did not affect 

precision or FDR (Supplementary Fig. 9). Together, these results demonstrate that limited overlap 

across technologies or cell lines does not compromise annotation accuracy, and that integrating 

multiple public resources effectively mitigates technology-specific biases and improves sensitivity 

without sacrificing precision. 

Characterization of RNA modification landscape and its regulatory crosstalk in human cell 

lines 

To demonstrate the applicability of our method, we applied ORCA to characterize the RNA 

modification landscape in human cell lines DRS data from the SGNex project49. In summary, a 

total of 98,586 sites were detected across all samples, with 10,954 modification sites per cell line. 

Notably, 70.2% of these sites were consistently detected in at least two cell lines (Fig. 6a), which 

is consistent with the reported stable m6A modifications shared across human cell lines28. To 

further investigate the spatial associations between different modification types, we further 

calculated the genomic distances between adjacent modifications. Strikingly, a substantial 

proportion of  modifications (33%) occurred within 20-nt of each other (Supplementary Fig. 10a). 

We therefore clustered proximal sites using a 20-nt window, yielding 13,633 clusters with an 

average of 2.85 modification per cluster (Fig. 6b and Fig. 6c). As m6A was the most abundantly 

detected modification, most clusters were m6A-enriched, while a high degree of association 

between m6A and other modifications, such as m5C and m1A, was also observed, highlighting 

the complex spatial organization and potential crosstalk among neighboring modification types 

(Fig. 6d). 

 To further investigate the regulatory interplay between these neighboring RNA modifications, 

we applied an expectation-maximization (EM)-based model to estimate the single-molecule co-

occurrence patterns within modification clusters (Fig. 6e and Methods). Among 443,361 

modification clusters, 7,719 exhibited significant co-modification, while 39,906 were exclusively 

modified with competitive exclusion (Supplementary Fig. 6b). First, cooperative modified clusters 

were prioritized for downstream analysis. As shown in Fig. 6f, frequent co-occurrence of different 

modification was substantially observed, with m5C and m6A emerging as the most prevalent 

combinatorial pattern. To further validate these predictions, we leveraged m6A-SAC-seq and 

m5C-TAC-seq52 datasets to extract short-read level co-modification evidence. For instance, a 

cooperative modification of a pair of m6A sites spaced 8 nucleotides apart in the 3’ UTR of 

DNAJB1 was identified in IM95 DRS data and independently confirmed in the HeLa m6A-SAC-

seq data (Fig. 6g). Similarly, two co-occurring adjacent m5C sites in the 3’UTR of HDGF were 
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detected in Hct116 DRS data, which was also validated by HeLa m5C-TAC-seq (Supplementary 

Fig. 6c). These results demonstrated the cooperative modification between different types and also 

validated accuracy of ORCA in resolving spatial co-existence of neighboring RNA modifications 

at single-molecule resolution. 

To investigate the interplay between RNA modifications and splicing regulation, we then 

focused on exclusively modified clusters that exhibited significant isoform-specific changes in 

K562 cells, and integrated ENCORE eCLIP-seq data53 of K562 cells to assess regulatory 

associations. The binding patterns of RNA-binding proteins, including splicing factors and RNA 

modification associated proteins (writers, erasers, and readers, WERs) within these modification 

clusters were further calculated. Notably, many isoform-specific modification clusters, particularly 

those associated with m6A, showed significant enrichment of splicing factors and modification-

associated WERs, suggesting the widespread coupling between m6A modifications and alternative 

splicing events (Fig. 6h). For example, two splicing factors ELAVL154 and FMR155 were 

significantly enriched in isoform-specific m6A/m5C modification clusters, consistent with the 

FMR1’s preference for binding m6A-modified RNAs56, 57 (Fig. 6i-j). In one case, transcript-level 

analysis of RBIS revealed an isoform-specific exclusion pattern between neighboring m6A and 

m5C sites at exon 4 (Fig. 6k). m6A-modified reads were strongly associated with an upstream 

skipped exon, whereas the exon was consistently associated retained in m5C-modified reads. 

Furthermore, strong eCLIP-seq peaks for splicing factors MBNL1 and the RNA-binding protein 

FMR1 were also detected in the same region, consistent with their established roles in alternative 

splicing and m6A-mediated splicing regulation56. Together, these findings demonstrate that ORCA 

enables systematic characterization of the interactions between RNA modifications and splicing, 

offering a powerful platform for dissecting the multilayered regulation of eukaryotic transcriptome. 

 

Discussion 

In this study, we present a comprehensive computational framework for mapping global RNA 

modification landscape and regulatory crosstalk using nanopore direct RNA sequencing data. 

ORCA employs deep-learning algorithms for unbiased and generalized detection of RNA 

modification presence and enables accurate modification-type annotation by incorporating prior 

knowledge of validated sites. Comprehensive evaluations demonstrated that ORCA reliably 

detects and quantifies previously uncharacterized modification sites and revealed its applicability 

in uncovering complex interactions between neighboring modifications and isoform-specific RNA 

modification regulation. 

 Comprehensive detection of the full spectrum of RNA modification is essential for 

understanding their roles in RNA biology and epitranscriptomic regulation58, 59. However, current 

high-throughput sequencing-based approaches rely on modification-specific antibodies or 

chemical reactivity, substantially limiting their generalizability11-17. Despite rapid advancements 
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in DRS-based algorithms for modification detection or modification-aware basecalling, existing 

methods remain constrained by their dependence on modification-specific training sets9, 10, 21-27, 31. 

Meanwhile, comparative profiling of nanopore direct RNA-seq data across different experimental 

conditions have also enabled identification of RNA modification changes without modification 

type limitatiion21, 28, 29, but also overlook the unperturbed modifications thus restricting the 

analyses to condition-specific modification sites. Furthermore, modification types could only be 

inferred from experimental setup, which risk bias due to complex interaction between 

modification60. 

To address this limitation, ORCA leverages the mixed stoichiometry nature of RNA 

modifications and detects their presence based on variability in signal- and sequence-level features 

arising from the co-existence of modified and unmodified bases. Specifically, an adversarial 

learning strategy is employed to ensure unbiased detection of diverse modification by preventing 

modification-specific overfitting. Through comprehensive evaluation, we demonstrated that 

ORCA enables accurate zero-shot detection and quantification of various RNA modifications 

without requiring a corresponding training dataset. highlighting its broad applicability for profiling 

the transcriptome-wide RNA modification landscape. Furthermore, a transfer-learning based 

annotation assigns modification types by aligning signal- and sequence-level features of identified 

sites with prior knowledge from validated databases, enabling accurate co-profiling of multiple 

modification types. As metabolic labeling and chemical-based sequencing techniques continue to 

evolve, ORCA can be further extended to incorporate these reference sites, facilitating 

transcriptome-wide characterization of emerging RNA modifications without requiring extensive 

synthesis of in vitro transcription experiments. 

Nanopore-based full-length RNA sequencing approaches have been widely applied to resolve 

transcript isoform landscape across diver RNA classes61-63. Beyond transcriptome-wide 

characterization of RNA modification sites, single-molecule RNA modification identification is 

critical for uncovering the underlying regulatory crosstalk between different modifications10, 22, 23. 

ORCA incorporates an expectation-maximization (EM)-based model to infer single-molecule 

modification states and assess competitive or cooperative interactions among neighboring 

modification sites. Applied to human cell lines, ORCA substantially expanded the known catalog 

of RNA modification sites, increasing the number of both well-characterized m6A and other low-

abundance modifications. Notably, ORCA revealed the widespread interplay between different 

RNA modifications and uncovered the potential regulatory crosstalk between splicing factors and 

modification-associated RNA-binding proteins in shaping isoform-specific modification patterns. 

These findings highlight ORCA as a powerful platform for dissecting the complex regulatory 

architecture of the RNA epitranscriptome at isoform and single molecule resolution. 

Recent studies have employed deep-learning model for detecting multiple RNA modifications. 

In particular, TandemMod employs deep-learning models to identify multiple RNA modifications 
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(including m6A, m1A and m5C) at the single-read level, and further incorporate transfer learning 

to predict additional modification such as m7G, hm5C and Ψ using limited training examples10. 

While this approach enables simultaneous detection of multiple RNA modification types, it still 

relies on IVT-derived training sites, which restricts its ability to capture the full RNA modification 

landscape. In contrast, ORCA leverages a domain-adversarial learning strategy to infer 

modification presence based on signal polymorphism, enabling the detection of a wide range of 

RNA modification types without requiring corresponding IVT training sets. However, this 

approach requires sufficient read depth and is less effective at low-coverage sites (<10 reads). 

Further work integrating both strategies may enable robust de novo modification detection at single 

molecule level. 

In addition, recent advances in RNA-004 chemistry have largely improved ionic signal quality 

and basecalling accuracy64. To assess ORCA’s compatibility with the new sequencing chemistry, 

we trained an RNA004-specific model using the IVT curlcake dataset65 (Supplementary Fig. 11a). 

Compared with Dorado, ORCA achieved similarly high performance for the three basecallable 

modification types, while also maintaining high accuracy on the remaining four modification types 

that Dorado could not detect (Supplementary Fig. 11b-c). Furthermore, ORCA exhibited reliable 

zero-shot prediction performance for these modification, consistent with the results obtained on 

RNA002 datasets (Supplementary Fig. 11d).We additionally generated a mouse brain RNA004 

dataset and compared de novo m6A predictions between RNA002 and RNA004 using 

corresponding non-m6A models. ORCA produced highly concordant m6A signals across 

chemistries (Supplementary Fig. 11e-f), demonstrating stable and robust de novo detection under 

RNA004 chemistry (Supplementary Table 1). 

Despite these advantages, ORCA also faces several limitations. First, ORCA requires 

sufficient sequencing depth to robustly estimate modification-induced feature variability. 

Although its performance becomes largely insensitive to coverage beyond a certain threshold 

(Supplementary Fig. 12), reliable detection remains challenging at very low read depths (<10 reads) 

or when attempting single-read inference. In additional, the ELIGOS training dataset exhibited 

limited 9-mer diversity, which might introduce sequence composition biases and affect 

generalization. Cross-dataset evaluation using the in vitro transcribed epitranscriptome (IVET10) 

revealed that IVET-derived model achieved superior better cross-dataset prediction performance 

(Supplementary Fig. 13), indicating that greater sequence diversity in the training set improves 

ORCA’s prediction performance across diverse sequence contexts. Finally, each ELIGOS read 

contains only a single modification type, resulting in that no two modification types co-occur 

within the same read in the training dataset, which could impact the model’s performance to predict 

co-occurring modifications in very close proximity. 

In summary, ORCA comprehensively captures the full RNA modification spectrum and 

reveals the widespread crosstalk between different modifications and splicing regulation. This 
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framework enables unbiased profiling of RNA modifications without requiring extensive IVT 

training data, providing robust identification of various RNA within individual samples and 

detection of biologically relevant changes across experimental conditions. By facilitating 

simultaneous identification, quantification and annotation of diverse RNA modifications at 

isoform and single-molecule resolution, ORCA uncovers the cooperative modification patterns 

among neighboring modification sites and highlights the potential regulatory role of adjacent RNA 

modifications and RBPs in isoform-specific splicing and modification dynamics. Overall, ORCA 

provides a powerful computational strategy towards the comprehensive elucidation of the 

RNAome, offering a foundation for understanding RNA biology at unprecedented resolution. 
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Methods 

Ethics statement 

All experimental procedures involving animals in this study were carried out in accordance with 

the guidelines for procurement and use of laboratory animals and have been approved by the 

Institutional Animal Ethics Committee at the Institute of Zoology, Chinese Academy of 

Sciences.  

 

Animal experiments 

All mice used in this study were adult C57BL/6 mice and were purchased from SiPeiFu 

Biotechnology. Two adult mice were used for brain tissue dissection, with one mouse used for 

RNA002 sequencing and the other for RNA004 sequencing. Animals were maintained under 

conventional specific pathogen-free conditions and a 12-h light/12-h dark cycle at 25 °C and 

40–60% humidity.  

 

RNA isolation and nanopore direct RNA sequencing 

Total RNA was extracted from two healthy adult mice brain using TRIzol (Invitrogen) according 

to the manufacturer’s instructions. RNA integrity and quality were assessed using the Agilent 5200 

Fragment Analyzer System. Nanopore direct RNA-seq library was prepared using the Direct RNA 

Sequencing Kit (SQK-RNA002) from Oxford Nanopore Technologies following the 

manufacturer’s protocol and sequenced on an  R9.4.1 flow cell (FLO-MIN106D) using a 

MinION Mk1B device for 72 hours. An adult mouse brain direct RNA-seq library was also 

generated using the SQK-RNA004 sequencing kit and sequenced according to the manufacturer’s 

instructions on an FLO-MIN004RA flow cell for 72 hours. 

 

m6A-SAC-seq and data analysis 

For m6A-SAC-seq experiments, 1 μg of total RNA was subjected to ribosomal RNA depletion 

using the RiboErase kit (human/mouse/rat, Kapa Biosystems). The rRNA-depleted total RNA was 

used directly for m6A-SAC-seq library preparation following the protocol described by He et al17. 

Briefly, m6A modifications were selectively converted into allyl-labeled derivatives by MjDim1, 

followed by iodine-induced intramolecular cyclization. These modifications were subsequently 

converted into sequence mutations during by HIV-1 RT reverse transcription and detected via 

Illumina sequencing. 

Sequencing reads were trimmed using Cutadapt66 (v2.10) and Fastp67 (v0.23.4) Reads aligning 

to rRNA sequences were removed using Bowtie268 (v2.3.4.3) and Samtools69 (v1.18). Cleaned 
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reads were then mapped to the mm10 reference genome using STAR70 (v2.7.10b). PCR duplicates 

were collapsed using UMICollapse71 (v1.0.0), and deduplicated BAM files from biological 

replicates were merged with Samtools. Strand-specific BAM files were generated and processed 

with Samtools mpileup. Somatic variants were called using VarScan72 (2.3.9), and candidate m6A 

sites were identified based on mutation profiles and the presence of DRACH motifs. 

 

Nanopore data preprocessing and feature extraction 

The GRCh38 (human) and GRCm38 (mouse) reference transcriptome were obtained from the 

Ensembl database. For RNA002 data, raw nanopore fast5 files were basecalled using Guppy 

(v6.3.8) with rna_r9.4.1_70bps_hac model. For RNA004 data, raw nanopore pod5 files were 

basecalled using Dorado (v1.1.1+e72f1492) with rna004_130bps_hac@v5.2.0 model. POD5 files 

was transferred to BLOW5 format using bluecrab73 (v0.4.0) p2s and slow5tools74 (v0.8.0) merge 

commands. Basecalled reads were then aligned to the reference transcriptome using Minimap275 

(v2.21, with the parameters ‘-ax splice -N 0 -uf -k14 --cs --secondary=no’). The alignment results 

were processed with samtools mpileup (v1.11) to generate per-base summary statistics. Ionic 

current signals were aligned to the reference sequence using the f5c76 eventalign (v1.11), an 

accelerated implementation of Nanopolish77, with the parameters ‘--min-mapq 0 --rna --signal-

index --scale-events --secondary=no --collapse-events’ for RNA002 and ‘--pore RNA004 --min-

mapq 0 --rna --signal-index --scale-events --secondary=no --collapse-events’ for RNA004 reads. 

For modification presence prediction, both signal-level and sequence-level features were 

extracted within a ±2 k-mer window surrounding each candidate site. For signal-level features, 

raw electrical events from the eventalign output were standardized using the method defined in 

Nanopolish. Specifically, each event’s mean signal level was normalized by subtracting the 

expected reference mean and then dividing by the reference standard deviation. This normalization 

accounts for variation in signal intensity across different sequence contexts. The standardized 

signal values from all reads aligned to the same genomic position were then aggregated and 

interpolated into a fixed-length vector of 50 values to ensure consistent input dimensions for the 

model. For sequence-level features, rate of insertions, deletions, and mismatches, as well as 

statistical metrics including the mean, median, and standard deviation of sequence quality scores 

of all aligned at each position were extracted based on the ‘samtools mpileup’ result. 

 For modification type annotation, three categories of features were included as input for the 

transfer-learning model. K-mer occurrence features were derived from the frequency of all 256 

possible 4-mer motifs within an 11-nucleotide window centered on each modification site. Besides, 

signal-level features were computed using the event level means and standard deviations across 

the window surrounding each modification site. Then a Gaussian mixture model was applied to 

partition each feature into divide into modified and unmodified clusters, and the mean, variance, 

and covariance of each component were extracted as model input. Finally, sequence-level features 

were obtained using the same strategy as described above. 
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ORCA model design 

ORCA comprises two neural network models designed for predicting the presence of RNA 

modifications and inferring their types. For modification presence prediction, ORCA adopts a 

domain-adversarial neural network architecture composed of an encoder and two classifier 

branches. The encoder utilizes a bidirectional LSTM network to capture contextual and sequential 

dependencies from both sequence- and signal-level features within a 11-nucleotide window 

surrounding each candidate site. The encoded representations are then simultaneously passed into 

two parallel branches: (1) a modification predictor for predicting modification presence (modScore) 

along with an estimate of stoichiometry; and (2) a domain classifier with a gradient reversal layer 

aims to distinguish between different RNA modification types. The model is trained adversarially 

to optimize encoder and modification predictor to accurately detect modification presence, while 

the encoder is simultaneously trained to learn representations that minimize the performance of 

domain classifier, ensuring a generalizable representation of modification presence across a 

diverse range of modification types without introducing modification-specific bias. 

For modification type inference, ORCA employs a transfer-learning framework consisting of 

an autoencoder and two classifier modules. During the pretraining phase, the autoencoder learns 

the global low-dimensional representation of all predicted modification sites. The encoded features 

are subsequently passed to multi-task prediction to produce probabilities corresponding to different 

modification types and phase represent the exact modification position in the input window. Then, 

only modification type predictions that corresponding to the base at the inferred modification 

position are retained as valid outputs. 

 

Model training 

To train the presence prediction model, we generated a labeled dataset based on the public ELIGOS 

resource. Specifically, six in vitro transcribed RNA samples containing individual modifications 

(m1A, m6A, m5C, hm5C, 5fC, and Ψ) and a control sample composed of only canonical bases 

were obtained. For each modification type, raw nanopore reads were aligned to the reference 

sequence using Minimap2. Then, modified and unmodified reads were randomly sampled and 

combined to generate 3,000 training samples at varying sequencing depths (10-200) and 

modification rates (0-1) of individual modification site. The sequence- and signal-level features 

were extracted as described above, resulting in a training set that simulate the realistic features of 

RNA modification types and stoichiometry levels. In total, over 7 million training samples were 

generated. Positions with >10% modified reads were labeled as positive samples. For each 

modification type, the dataset was randomly split into training and testing set at 4:1 ratio. Model 

optimization was conducted using the AdamW optimizer with a learning rate of 0.0005. The loss 

functions were defined as follows: negative log-likelihood loss (NLLLoss) for modification 
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presence prediction, NLLLoss for domain label prediction, and mean squared error (MSELoss) for 

stoichiometry regression. 

To train the modification type annotation model, we utilized 25 direct RNA-seq datasets 

generated from the MinION/GridION platform, spanning nine human cell lines from the SGNex 

project49. RNA modifications were first identified using the ORCA prediction module with a 

modScore threshold of 0.9 to ensure high-confidence predictions. Predicted modification sites 

were then annotated based on the presence of NGS-supported modifications from RMBase v3.034 

and DirectRMDB35 using a distance threshold of ±2 nucleotides. The autoencoder was initially 

trained on all predicted modification sites using the AdamW optimizer with a learning rate of 0.002 

and MSELoss to learn global feature representations. The model was then fine-tuned using the 

annotated subset to enable prediction of both modification type and phase. These downstream tasks 

employed cross-entropy loss and were optimized with AdamW at the same learning rate. For each 

modification type, the labeled dataset was split into training and testing set in an 1:4 ratio. To 

mitigate class imbalance, each mini-batch was constructed to contain similar numbers of samples 

from each modification type, preventing the loss function from being dominated by any single 

class. To avoid over-assignment of uncharacterized modifications to known categories, we also 

included 3,000 unannotated sites as negative controls during training to ensure a stringent and 

reliable identification of known modification types. 

 

EM based prediction of modification interactions 

ORCA outputs read-level modification predictions for neighboring modification pairs through the 

EM-based model, which enables assessment of read-level linkage or mutual exclusivity between 

modification events. After performing RNA modification presence and type prediction and across 

all human cell line samples, only high-confidence sites detected in at least two samples were 

retained for downstream analysis. To define local modification clusters, transcriptomic distances 

between neighboring modification sites were calculated, and sites within 20 nucleotides were 

iteratively merged into the same cluster. To minimize potential signal interference caused by 

adjacent modifications, any neighboring sites located within 4 nucleotides of each other were 

excluded from clustering. 

 To evaluate potential co-modification between modification sites within each cluster, we 

employed a Local Outlier Factor (LOF) score-based strategy to infer the read-level modification 

states. For each site, raw signal features including event level mean, standard deviation, and dwell 

time were extracted from a ±5 k-mer (15 nucleotide) window. LOF scores were computed for each 

read and normalized to the range [0, 1]. For every pair of neighboring modification sites, each read 

was represented as a two-dimensional coordinate (xi, yi), where xi and yi are the normalized LOF 

scores at the two positions, respectively. 

Given the site-specific distributions of LOF scores, we employed an expectation-

maximization (EM) algorithm to classify each read into one of four canonical modification states 
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including: d0 centered at (0,0) for unmodified reads; d1 centered at (1,1) for dual modification; and 

d2 and d3 centered at (1,0) and (0,1) respectively for single-site modifications. Each state dj was 

assigned an initial mixing weight θj = 0.25. In the expectation step, the posterior probability that 

read ri (xi, yi) belongs to state dj was calculated as: 

 

𝛾𝑖𝑗 =
𝜃𝑗 ∙ 𝑃(𝑟𝑖|𝑑𝑗)

∑ 𝜃𝑘 ∙ 𝑃(𝑟𝑖|𝑑𝑘)3
𝑘=0

 (1) 

 

where the likelihood 𝑃(𝑟𝑖|𝑑𝑗) = 𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛(𝑟𝑖 , 𝑑𝑗) × 𝑠(𝑟𝑖, 𝑑𝑗) was defined as the product of 

the Euclidean distance between ri and the center of dj, and a dispersion score 𝑠(𝑟𝑖, 𝑑𝑗), such that: 

𝑠(𝑟𝑖, 𝑑0) = 𝑠(𝑟𝑖, 𝑑1} = 1 − |𝑥𝑖 − 𝑦𝑖| 

𝑠(𝑟𝑖, 𝑑2) = 𝑠(𝑟𝑖, 𝑑3} = 1 − |𝑥𝑖 + 𝑦𝑖 − 1| 
(2) 

 This formulation captures both the geometric proximity of the read to a canonical 

modification state and the consistency of LOF across the two sites. 

In the maximization step, the mixing weights were updated as the mean of the posterior 

probability across all N reads: 

𝜃𝑗 =
1

𝑁
∑ 𝛾𝑖𝑗

𝑁

𝑖=1

 (3) 

The EM process was iteratively repeated until convergence, defined by the change in posterior 

weights falling below a predefined threshold. After convergence, each read was assigned to the 

modification state with the highest posterior probability 𝛾𝑖𝑗, enabling stratified analysis of co-

modified, mutually exclusive, and unmodified read populations within each cluster. 

To further quantify the interaction between each pair of modification sites, we defined a 

linkage score for each candidate pair as: 

 

𝐿𝑖𝑛𝑘𝑎𝑔𝑒 𝑠𝑐𝑜𝑟𝑒 = (𝜃1 − 𝜃2) + (𝜃1 − 𝜃3) (4) 

 

A modification sites was considered cooperatively modified if θ1 > max (θ2, θ3), indicating an 

enrichment of simultaneously modified reads. Conversely, modification site pairs were considered 

as mutually exclusive if the linkage score was less than -0.2 and θ1 < min (θ2, θ3), suggesting that 

the two modifications tend not to co-occur in the same read. 

 

False positive rate evaluation 

To evaluate the false discovery rate of ORCA, the IVT human mRNA transcriptome were 

downloaded from the SRA database (accession number SRP166020). ORCA was employed to 
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predict the modification presence in the IVT transcriptome. Among 7,576,597 sites with coverage 

great than 10, where only 2.25% (170,708) of sites were predicted as modified using the default 

modScore threshold of 0.9. TandemMod, EpiNano-SVM, NanoPSU and m6ANet were also 

applied to the same IVT transcriptome. For each tool, the cumulative distribution function of 

prediction scores were calculated, and false discovery performance was measured using the area 

under the cumulative distribution curve.  

 

Model benchmarking 

To evaluate ORCA’s performance, we benchmarked it against several representative tools for 

direct RNA modification detection using publicly available datasets. For m6A prediction, we 

included m6Anet22 (v2.0.1), TandemMod10 (v1.1.0), EpiNano21 (v1.2), CHEUI23 (v0.1), xPore28 

(v2.1), Nanocompore29 (v1.0.4). For m5C detection CHEUI, TandemMod and xPore were also 

employed. For Ψ detection, Tombo (v1.5.1) and NanoPSU27 (v1.0) were used. Benchmarking was 

mainly performed on three datasets: Mettl3 knockout and wild-type (KO/WT) mouse embryonic 

stem cell (mESC) samples for m6A detection (SRP166020), NSUN2 KO/WT HeLa samples for 

m5C (SRP393373) and a mixed rRNA sample for Ψ detection (SRP329477). All sequencing reads 

were aligned using Minimap2. Most tools utilized using transcriptome-based alignment, except 

for EpiNano, which required genome-based alignment. For signal-to-reference alignment, most 

tools employed the eventalign module for f5c76 or Nanopolish77 with tool-specific parameter 

configurations. However, TandemMod used ‘tombo resquiggle’ command to map raw ionic 

signals to the basecalled sequences. 

 

m6A detection in mESCs (Mettl3 KO/WT) samples 

To benchmarking m6A detection, we evaluated several tools using the Mettl3 knockout and wild-

type mouse embryonic stem cell (mESC) sample. Experimentally detected m6A sites were 

obtained from the GEO database, using the union of GLORI15 (GSE210563) and miCLIP212 

(GSE163491) datasets as ground truth references. 

For EpiNano (v1.2 SVM & Error mode), we first converted BAM files into TSV format using 

sam2tsv from jvarkit (v2023.09.07) and extracted basecalling error features with 

Epinano_Variants.py script. Then, Epinano_DiffErr.R and Epinano_Predict.py were used to 

identify differentiated modified sites across samples and to directly predict m6A modifications, 

respectively. For CHEUI (v0.1 diff & solo mode), feature extraction was performed using ‘CHEUI 

preprocess --m6A’, then followed by direct m6A prediction using CHEUI_predict_model1.py and 

CHEUI_predict_model2.py. Additionally, signal-level differentiated analysis between samples 

was carried out using CHEUI_differentialRNAMod command. For m6Anet (v2.0.1), input data 

were preprocessed using ‘m6anet dataprep’ command, and m6A sites were inferred with ‘m6anet 

inference’. For Nanocompore (v1.0.4), event-level signal alignments were first collapsed to the 
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site level using ‘nanocompore eventalign_collapse’ command, and sample comparisons were 

performed using ‘nanocompore samplcomp’. For TandemMod, raw signal features were extracted 

from Tombo-resquiggled fast5 files using extract_signal_from_fast5.py and 

extract_feature_from_signal.py, and modification predictions were performed using 

‘TandemMod.py --run_mode predict’. For xPore (v2.1), signal-level features were extracted using 

the ‘xpore dataprep’ command, and differential modification analysis was performed with ‘xpore 

diffmod’. For ORCA, both wild-type and knockout samples were processed using the modification 

presence prediction model. 

To evaluate the m6A prediction performance, the difference in ORCA’s predicted modScore 

between paired samples was used to rank candidate m6A sites. The overlap between top 

differential modified m6A sites and reference m6A dataset were further calculated. For tools that 

directly provide differential predictions, such as xPore and CHEUI-diff, the reported difference in 

modification rate was used as the ranking metric. For EpiNano-Error and Nanocompore, we used 

the delta_sum_err and P-values, respectively, as provided in their outputs. To reduce tool-specific 

biases and ensure fair comparisons, transcriptome coordinates were converted to genomic 

coordinates, and only genomic sites reported in both samples were retained for downstream 

analysis. When multiple predictions are assigned to a single genomic site, the prediction with the 

highest score was selected to represent that position. 

 

m5C detection in HeLa NSUN2 KO/WT samples 

To evaluate the m5C detection performance, CHEUI, TandemMod, xPore and ORCA were applied 

to NSUN2 knockout and wild-type HeLa cell samples using the same preprocessing and prediction 

workflow described above. Reference m5C sites identified from HeLa BS-seq39 (GSE122260), 

bsRNA-seq40 (GSE140995) and RNA-BisSeq41 (GSE93751) were directly downloaded from the 

GEO database and merged  to construct a unified reference set. For comparison against WT and 

KO samples, the same strategy was applied here to ensure consistent genomic site-level 

comparisons, and only sites that detected in both samples were retained for evaluation. The changes 

in predicted stoichiometry between WT and KO samples at m5C sites were calculated for 

comparison. 

 

Ψ detection in mixed rRNA sequencing samples 

For Ψ detection evaluation, we evaluated ORCA, Tombo and NanoPSU using rRNA sequencing 

data. Reference Ψ sites supported by SILNAS-based mass spectrometry46 were used as the ground 

truth. Basecalled reads were aligned to ribosomal RNAs from four species following the procedure 

described in NanoPSU27. For downstream comparison, only reads aligned to human 18S 

(NR_003286.4) and 28S (NR_003287.4) rRNA sequences were retained. For Tombo, Ψ sites were 

identified from resquiggled fast5 files using the ‘tombo detect_modifications’ command in 
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de_novo detection mode. For NanoPSU, the recommend pipeline was applied, where alignment, 

remove_intron, extract_features and prediction commands were subsequently performed for Ψ site 

prediction. For TandemMod, raw signal features were extracted from Tombo-resquiggled fast5 

files using extract_signal_from_fast5.py and extract_feature_from_signal.py, and modification 

predictions were performed using ‘TandemMod.py --run_mode predict’ with the Ψ detection 

model. 

 

Benchmarking of zero-shot modification detection 

To evaluate ORCA’s zero-shot detection capability, training datasets were constructed by 

iteratively selecting different combinations of 2 to 5 RNA modification types from the full set of 

six RNA modifications (m6A, m5C, Ψ, m1A, hm5C, 5fC). For each combination, the selected 

modifications were used to train ORCA modification presence prediction model as previously 

described. The trained models were then used to perform zero-shot prediction on the modification 

types excluded from training. Prediction accuracy and recall were calculated for each target 

modification type for evaluation. In addition, the Pearson correlation between predicted 

stoichiometry and simulated ground truth were calculated to evaluate the generalizability of 

modification identification and quantification. 

 For zero-shot m6A prediction, an m6A-absent model was trained by excluding m6A from the 

training dataset. This model was then applied to direct RNA-seq data obtained from mouse brain 

tissue, and m6A sites detected by mouse brain m6A-SAC-Seq were used as reference dataset. 

ORCA’s modScores were computed for all adenosine (A) sites located at the center of DRACH 

motifs across the transcriptome. The distribution of modScores between m6A-SAC-Seq-supported 

m6A sites and random selected background adenosines within DRACH motifs was compared 

using a two-sided Wilcoxon rank-sum test. 

 For Nm prediction, ORCA modScores were computed for sites supported by 2’-OMe-seq 

experiments44 downloaded from RMBase v3.034. All other transcriptome sites with read coverage 

greater than 10 were used as background controls. The distributions of modScores between 

reference Nm sites and background transcriptomic sites were compared using a two-sided 

Wilcoxon rank-sum test.  

 For zero-shot prediction of inosine (A-to-I) RNA editing sites, a Schizosaccharomyces pombe 

direct RNA-seq dataset was downloaded from PRJEB46364. The ASM294v2 S. pombe genome 

and annotation were downloaded, and the recommended strategy described in DeepEdit45 was 

followed to establish a high-confidence set of inosines (A-to-I) RNA editing sites. Illumina RNA-

seq reads from two hADAR2+ samples and two control samples were downloaded and individually 

aligned using HISAT278 and processed with bcftools69 mpileup for single-nucleotide variant 

calling. Candidate sites were defined as A-to-G substitutions supported by a minimum read 

coverage of 50 and a variant allele frequency exceeding 10%. Sites that consistently appeared in 
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both hADAR2+ samples and were absent from any of the control sample were retained as the final 

ground truth set for evaluation. 

For the evaluation of rRNA modification predictions, high-confidence modification sites for 

human 18S/28S and yeast 18S/25S rRNAs were download from a published SILNAS mass-

spectrometry based study46. The mixed-species rRNA direct RNA-seq library was then analyzed, 

and ORCA-predicted modScores were benchmarked against the reference modification sites to 

calculate the true-positive rate and false-discovery rate. 

For the evaluation of non-natural modifications, publicly available 4sU-labelled K562 direct 

RNA-seq data79 and a matched DMSO control sample were downloaded and analyzed using 

ORCA. The change in modScore between the 4sU-labelled and control samples was compared 

between U-containing and non-U-containing 5-mers was calculated to measure the enrichment of 

modification signal at 4sU-incorporated sites. In addition, a transcript-level 4sU load was defined 

as the sum of ORCA-estimated modified counts across U-centered sites per transcript, and was 

compared with transcript abundance in matched short-read 4sU pulldown RNA-seq data using 

Spearman correlation to evaluate concordance between ORCA-derived 4sU signals and orthogonal 

measurements of 4sU incorporation. 

 

Benchmarking of simultaneous prediction of multiple RNA modification types 

For both mESCs and HeLa datasets, RNA modification sites were independently predicted from 

two WT replicates. Only sites commonly identified in both replicates were retained, and mean 

modScore across replicates was calculated and used for site ranking. To establish a reference 

modification set, predicted modification sites were compared against public databases, including 

DirectRMDB35 and RMBase v3.034, as well as orthogonal long-read based prediction tools: 

m6Anet (m6A), EpiNano-SVM (m6A), CHEUI-solo (m6A & m5C), and NanoPSU (Ψ). To 

exclude SNV interference, predicted modification sites with unnormal high mutation rate of 

insertion, deletion or mismatch exceeding 0.5 were excluded from the prediction results. Then, the 

top 10,000 ranked sites were retained for downstream analysis. 

 

Benchmarking of modification type annotation 

To evaluate the performance of modification type annotation, the K562 DRS dataset 

(K562_replicate6_run1) from the SGNex project was first employed for modification site 

prediction. A total of 48,377 high-confidence modification sites were annotated using NGS-

supported sites from RMBase and DirectRMDB. The modification annotation model was trained 

as described above using a five-fold cross-validation. The annotation precision was measured by 

dividing the numbers of each correct modification annotation by the number of assigning to it and 

other types. The recall rate was measured by dividing the number of correct modification 

annotation by the total number of modification sites in the validation site. The final trained model 
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was applied to unannotated candidate sites for modification type inference, and prediction results 

were subsequently filtered based on the correspondence between the predicted modification type 

and the reference nucleotide. Specifically, an additional filtering step was applied for m6A 

prediction to retain only sites located within the consensus DRACH motif. 

To evaluate the false discovery rate (FDR), each modification type was iteratively excluded 

from the training dataset. The trained model was then used to assess the fraction of excluded 

modification type incorrectly predicted as one of the included types. The number of such 

misclassified sites was used to quantify the DFR for each modification type. 

For modification annotation validation, de novo motif analysis of ORCA-annotated m5C sites 

was performed using XSTREME50. For m7G validation, the QKI-CLIP peaks were downloaded 

from GSE193039, and intersected with the annotated m7G sites. For m1A validation, peaks 

identified by m1A-Seq (GSE70485) were downloaded, and each  peak was expanded by ±150 

nt around the center before intersecting with predicted m1A sites. For Ψ validation, single-

nucleotide resolution Ψ sites from BID-seq (GSE179798) were downloaded and compared against 

predicted Ψ, non-Ψ sites, and unmodified controls. For m6A validation, m6A sites detected by 

GLORI were downloaded from GSE210563 and compared against public databases and ORCA-

annotated m6A sites. To account for potential influence in neighboring nucleotides, coordinates 

from BID-seq and GLORI were converted to 5-mer regions prior to comparison. 

 

Exclusive modification sites identification and RBP enrichment analysis 

To quantify transcript-level variation in exclusively modified sites, each pair of unique genomic 

sites was treated as an individual unit of analysis. To focus on isoform-specific modifications, only 

modification pairs that were supported by reads spanning more than one transcript isoform were 

retained. For each modification pair, an n × 3 contingency table was constructed, where n 

represents the number of transcript isoforms, and the three columns correspond to the number of 

reads assigned to each distribution including d1 (simultaneous modification at both sites), d2 

(modification at the upstream site only), and d3 (modification at the downstream site only). A chi-

square test was then applied to assess variation in modification patterns across different transcript 

isoforms. Resulting p-values were used to rank the site pairs by isoform-specific modification 

heterogeneity. 

 To explore potential regulatory mechanisms underlying these isoform-specific modification 

patterns, the binding of RNA-binding proteins (RBPs) near these modification sites was analyzed. 

Genomic binding profiles from eCLIP-seq experiments for 139 RBPs in K562 cells were obtained 

from the ENCODE project in bedGraph format. All isoform-specific modification pairs were 

ranked by statistical significance, and enrichment of RBP binding around the top-ranked site pairs 

was assessed using a hypergeometric test. RBPs with P-values≤ 0.01 were considered 

significantly enriched. To further investigate the connection between isoform-specific 

modifications and splicing regulation, we performed an in-depth analysis using a curated list of 21 
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splicing factors from the SpliceAidF80 database and 7 known RNA modification regulators, 

including writers (RBM15), erasers (FTO) and readers (HNRNPA1, IGF2BP1, IFG2BP2, FMR1). 

 For single-read-level validation, raw reads from m5C-TAC-Seq (SRP459299) and m6A-SAC-

Seq (SRP295164) raw reads were downloaded and aligned to the hg38 reference genome with 

STAR70 (v2.7.10b). Modification coordinates reported by m6A-SAC-Seq (GSE162356) and the 

m5C-TAC-Seq (provided in their supplementary data) were used as reference loci to quantify and 

visualize single-molecule co-occurrence between adjacent modification sites. The same m6A and 

m5C loci were independently visualized using ORCA predictions derived from IM95 and HCT116 

direct RNA-seq samples, respectively. 

 

Benchmarking on RNA004 chemistry data 

For RNA004 chemistry, a prediction model was trained on curlcake IVT libraries65 containing 

seven synthetic RNA modification samples and an unmodified control. Training samples with 

defined modification fractions and read depths were generated using the same mixing strategy as 

for the RNA002 training sets, and the trained model was evaluated on held-out RNA004 test 

samples by ROC and precision-recall analysis for each modification type. For comparison with 

the vendor-provided state-of-art caller, Dorado RNA modification models 

(rna004_130bps_hac@v5.2.0 for m5C, Ψ and inosine/m6A) were applied to the same curlcake 

reads. Read-level modification calls from Dorado were aligned to the reference using the Dorado 

aligner, and per-site modification statistics were obtained with modkit pileup. To place Dorado in 

the same simulated evaluation framework, synthetic sites spanning a range of sequencing depths 

and modification fractions were generated by random sampling, and the per-site modification 

fractions reported by Dorado were used as continuous prediction scores. Sites with a true simulated 

modification fraction of at least 0.1 were treated as positives, and ROC and precision–recall curves 

were computed using the Dorado scores. 

To examine zero-shot detection on RNA004, leave-one-modification-out models were 

constructed by excluding each of the seven synthetic modification types in turn from the RNA004 

curlcake training set and evaluating presence-prediction performance on the held-out type. De 

novo m6A detection across chemistries was further assessed on RNA002- and RNA004-based 

mouse brain direct RNA-seq libraries using models trained without m6A. For each library, ORCA 

modScores were calculated at adenosines located in DRACH motifs, and score distributions were 

compared between m6A-SAC-seq-supported sites and background DRACH positions. Overlaps 

of called m6A sites between the RNA002 and RNA004 datasets were summarized at the site level. 

 

Benchmarking on ELIGOS and IVET training data 

To assess the impact of training-set composition and sequencing chemistry on the presence-

prediction model, additional models were trained on alternative IVT resources. One model was 
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trained on IVET library81 from the TandemMod study using the same simulation pipeline and 

neural network architecture as the ELIGOS-derived RNA002 training set. Performance of the 

ELIGOS-trained and IVET-trained models was compared by computing ROC and precision-recall 

curves, in order to evaluate cross-dataset generalization and the influence of sequence diversity in 

the training data. 

 

Benchmarking on sequencing depth dependence of ORCA prediction model 

The effect of read depth on presence-prediction performance was assessed by stratifying 

candidate sites into coverage bins and computing evaluation metrics within each bin. In the 

ELIGOS IVT datasets, sites with at least 10 supporting reads were grouped into four depth 

ranges. For each modification type and each depth bin, AUROC and AUPRC were calculated 

using the simulated modification labels as reference. A depth-stratified evaluation was also 

carried out for endogenous m6A detection in the mESC Mettl3 WT/KO datasets. Sites were 

grouped into the same four coverage bins, and precision-recall and ROC curves were computed 

separately for each bin. 

 

Benchmarking on assay-specific and cell line-specific biases 

Assay-specific and cell-line-specific biases were evaluated on K562 cell line by partitioning 

database-supported sites for m6A, m5C, m1A and Nm according to the profiling technology or 

cell line. For each modification type in turn, annotation models with the same architecture and 

training procedure were trained in a multi-class setting in which training examples for the focal 

modification were restricted to sites from a single technology or cell line, whereas training 

examples for all other modification types and the background class always included all available 

database-supported sites. For each training configuration, recall and 1−FDR for the focal 

modification were quantified on sites detected by held-out technologies or cell lines. 

 

Statistics and reproducibility  

No statistical method was used to predetermine the sample size. The in vivo mouse experiment 

was performed once as a small proof-of-principle, using two adult C57BL/6 mice, and is not used 

for formal statistical comparisons or sex-specific analyses. This sample size was chosen to obtain 

one high-depth RNA002 and one high-depth RNA004 direct RNA-sequencing library in order to 

demonstrate technical feasibility rather than to estimate variability between animals. For all 

computational analyses, sample sizes were determined by the size of the available public datasets, 

and we used all reads or samples that passed predefined quality control criteria without additional 

subsampling. No data were excluded from the analyses.  

Where statistical tests were applied, the specific test, the exact P values and the definition of 

n are provided in the figure legends or Source Data. P values < 0.05 were considered statistically 
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significant unless otherwise stated. All computational analyses were performed using Python 

Jupyter Notebooks with numpy, pandas and scipy for numerical/statistical calculations and 

matplotlib/seaborn for plotting. All codes to replicate the analysis are available as part of code 

availability. 

 

Data Availability 

The m6A-SAC-seq and ONT direct RNA-seq data generated in this study have been deposited in 

the Genome Sequence Archive82 in National Genomics Data Center, China National Center for 

Bioinformation (Accession number: 

PRJCA040561[https://ngdc.cncb.ac.cn/bioproject/browse/PRJCA040561]) that are publicly 

accessible at https://ngdc.cncb.ac.cn/gsa. Publicly available nanopore direct RNA sequencing 

datasets used in this study were obtained from 

SRP166020[https://trace.ncbi.nlm.nih.gov/Traces/?view=study&acc=SRP166020], 

SRP393373[https://trace.ncbi.nlm.nih.gov/Traces/?view=study&acc=SRP393373], 

PRJEB46364[https://www.ebi.ac.uk/ena/browser/view/PRJEB46364], 

SRP329477[https://trace.ncbi.nlm.nih.gov/Traces/?view=study&acc=SRP329477], 

PRJEB82528[https://www.ebi.ac.uk/ena/browser/view/PRJEB82528], 

SRP426654[https://trace.ncbi.nlm.nih.gov/Traces/?view=study&acc=SRP426654], 

SRP171702[https://trace.ncbi.nlm.nih.gov/Traces/?view=study&acc=SRP171702] and the 

SGNex project49. RNA modification sites detected by NGS-based sequencing technologies were 

collected from the RMBase v3.034 and DirectRMDB35. Additionally, individual datasets were used 

for detection different modification types including m6A 

(GSE210563[https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE210563], 

GSE163491[https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE163491]), m5C 

(GSE140995[https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE140995], 

GSE93751[https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE93751], 

GSE122260[https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE122260]), Ψ 

(GSE179798[https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE179798]), m1A 

(GSE70485[https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE70485]), m7G 

(GSE193039[https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE193039]), and inosine 

(PRJEB46364[https://www.ebi.ac.uk/ena/browser/view/PRJEB46364]). In particular, the m5C 

sites were identified as described in CHEUI23, and inosine editing sites were de novo identified 

from RNA-seq data in the DeepEdit45 study. Source Data are provided at Zenodo 

(https://doi.org/10.5281/zenodo.17960329). 

 

Code Availability 

ORCA is implemented in Python and can be freely accessed on GitHub at 

https://github.com/bioinfo-biols/ORCA and is archived on Zenodo under the DOI 
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https://zenodo.org/records/1794921383. The software is packaged with sample datasets and has 

been extensively tested on Linux. The detailed software installation guide has been included in 

our GitHub repository. Codes for data analysis have been depositied at Zenodo 

(https://doi.org/10.5281/zenodo.17785932). 
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Figures 

 

Fig. 1 | Overview of the ORCA framework for RNA modification characterization and annotation. 

a, Workflow of the preprocessing nanopore direct RNA sequencing data and extracting 

polymorphic features. Raw RNA reads were basecalled and aligned to the reference genome. 

Reads aligned to the same genomic position were aggregated, and both signal- and base-level 

features were extracted to capture the variability caused by presence of both modified and 

unmodified RNAs. b, Schematic of training set generation and modification presence prediction. 

The ELIGOS IVT dataset was sampled to simulate stoichiometries and sequencing depths of 

endogenous modification sites. Extracted features were used to train the ORCA modification 

presence prediction model, which comprising a dual-layer Bi-LSTM feature encoder, a domain 

classifier (C) and a modification predictor (P). The model was adversarially trained to suppress 

domain classifier performance while preserving accurate prediction of modification presence and 

stoichiometry. c, Schematic of the modification annotation model. Signal- and sequence-level 

features of predicted modification sites were combined with k-mer frequency features representing 

motif preference of RNA modifications. An autoencoder was first trained to embed all 

modification sites into lower dimensions, then the encoder was fine-tuned to predict modification 

types based on public reference annotation. The final model was then used for label-transfer 

prediction of previously unannotated modification sites. 
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Fig. 2 | Evaluation of modification prediction performance of ORCA. a, Precision-recall (PR) 

curves for six RNA modifications by cross-validation using the IVT training set. b, Sensitivity and 

false discovery rate (FDR) for each modification type at the default modScore threshold of 0.9. 

Colors indicate different modification types. c, Distribution of modScore in IVT human mRNA 

transcriptome. Red dashed line represents the modScore threshold of 0.9. d, Heatmap showing the 

modScore of sites detected in both Mettl3 KO and WT mESCs. e, PR curves comparing ORCA 

with other m6A-specific and comparative-based tools for detecting m6A sites at motif level. All 

sites within DRACH motifs were ranked based on change of modScore between WT and KO 

samples. f, Number of top-ranked differential modified sites supported by m6A sequencing 

(GLORI or miCLIP2) or DRACH motif for each method. g, Proportion of downregulated m5C 

sites among top differentially modified sites after NSUN2 knockout (KO). h, Number of 

significantly up- and down-regulated m5C sites detected by each tool. Differentially modified sites 

were identified using a chi-squared test comparing WT and KO predictions (p threshold: 0.05, 

exact per-site p values are provided in the Source Data file). Red: upregulated; Blue: 
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downregulated. i, Venn diagram comparing Ψ sites prediction of on human rRNA among ORCA, 

NanoPSU, TandemMod and Tombo. Source data are provided as a Source Data file. 

 
Fig. 3 | Evaluation of zero-shot detection capability for unseen RNA modification types. a, 

Overview of three evaluation strategies used to assess ORCA’s ability to detect unseen RNA 

modification types. Left: leave-one-out training using the IVT dataset to evaluate zero-shot 

prediction performance. Middle: evaluation of ORCA’s prediction of m6A, 2’-O-methylation (Nm) 

and inosine (I) sites detected using orthogonal NGS-based modification sequencing datasets. Right: 

prediction of ribosomal RNA medication sites validated by SILNAS mass spectrometry. b, 

Prediction accuracy of ORCA trained using different combination of modification types to predict 

modification types not included in training set. Lines represent the mean accuracy using different 

number of training modification types. c, modScore of m6A sites detected by m6-SAC-seq and 

background DRACH motifs. m6A sites, n = 2,067; background DRACH motifs, n = 2,466,196. p 

= 1×10-31, two-sided Wilcoxon rank-sum test. d, modScore of Nm sites detected by 2’-OMe-seq. 

Nm sites, n =39; background, n = 5,921,554, p = 1.30×10-24, two-sided Wilcoxon rank-sum test. 

For both violin plot panels, violin plots show the distribution of per-site values; the inner boxes 

indicate the interquartile range (25th–75th percentile) with the central line marking the median, 

and the whiskers extend to the most extreme data points within 1.5× the interquartile range. e, 

Density plot of modScores across RNA-seq detected inosines (bottom) and background 

transcriptome positions (top) in hADAR2+
 and WT S. pombe. Color scale indicates site density. f, 

Schematic of the human 18S rRNA secondary structure and RNA modification sites detected by 

SILNAS-MS. Colors denote different RNA modification types. g-h, modScore distributions of 

different RNA modification types in human 28S (g, n = 91) and 18S (h, n = 133) rRNA. Exact site 

counts for each modification type are provided in the Source Data file. Each point represents one 
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transcriptomic site. Red dashed lines indicate the default modScore threshold of 0.9. Source data 

are provided as a Source Data file. 

 

Fig. 4 | Simultaneous detection of different RNA modification types in HeLa and mESC 

transcriptome. a, Stacked bar plots of the fraction of predicted modification sites supported by 

NGS-based methods or other nanopore (ONT)-based prediction tools. Modification sites were 

ranked by ORCA’s modScores. b, Pie charts illustrating the composition of modification types and 

supporting platforms among the top 10,000 predicted sites in mESCs and HeLa transcriptome. For 

each modification type, colors indicate dual support of b oth NGS and ONT platforms (dark), 

NGS-only support (medium) or ONT-only support (light). c-d, Genome track views of predicted 

modification sites in mouse Lars2 (c) and Ets2 (d) transcripts. Differentially modified m6A sites 

are highlighted in red, and other modification types are shown in grey above the panels. In the 

normalized signal tracks, the central line indicates the median, and the nested boxes represent 

progressively more extreme quantile ranges of the distribution (with the innermost box 

approximately spanning the interquartile range, 25th–75th percentile), and n corresponds to the 

read depth at each transcript position; exact per-position n values are provided in source data. 

Source data are provided as a Source Data file. 
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Fig. 5 | Annotation of modification sites with a transfer-learning strategy. a, Schematic overview 

of the modification sites annotation pipeline. Predicted sites were first used to train an autoencoder, 

annotated modification types from public databases were then incorporated for supervised fine-

tuning. The encoder was fine-tuned to jointly predict modification type and phase shift, enabling 

accurate label transfer for previously unannotated modification sites. b, UMAP visualization of 

model-predicted logit scores assigning each site to each modification type. Colors indicate 

database-annotated modification sites (dark), ORCA-predicted modification sites (light), and 

unknown modification sites (grey). c-d, Cross-validation heatmaps showing the recall (c) and 

accuracy (d) of the modification type annotation model. e, Bar plot showing the specificity of the 

annotation model: 1 minus the false assignment rate for each modification type when that type is 

masked during training. f, Gene body distribution of database-annotated (orange) and ORCA-

predicted (blue) modification sites. g, Number of ORCA-predicted modification sites across seven 

modification types. Dark bars indicate database-annotated modification sites, and light bars 

represent ORCA-predicted sites. h, Two representative sequence motifs enriched among ORCA-

predicted m5C sites. i, Annotation of ORCA-predicted m6A and m5C sites on the CDT1 transcript. 

Tracks represent database-annotated m6A sites, ORCA-predicted m6A and m5C sites, and 

supporting evidence from UBS-Seq and GLORI. Source data are provided as a Source Data file. 
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Fig. 6 | RNA modification landscape and interplay of neighboring RNA modification sites across 

human cell lines. a, Summary of reads counts, number of detected modification sites, and Jaccard 

similarity of modification sites across nine human cell lines. b, Length distribution of modification 

clusters. C, Number of modification clusters stratified by the number of modification sites per 

cluster. d, Venn diagram showing the overlap of modification types within all identified clusters. 

e, Schematic of the expectation-maximization (EM)-based model used to estimate co-occurrence 

of mutually exclusive interactions between neighboring modification sites. Local outlier factor 

(LOF) is used to assess the probability of each read being modified at each site, followed by 

statistical testing to evaluate the significance of modification interactions. f, Proportion of co-

occurrence events between different modification type pairs. Arrow thickness reflects the relative 

frequency of source-target modification interactions. g, Example of two co-occurring m6A sites 

in the DNAJB1 transcript detected in IM95 DRS data and validated by HeLa m6A-SAC-seq. h, 

Heatmap of enrichment score for splicing regulators and RNA modification-associated proteins 

(writers, erasers, readers; WERs) at isoform-specific, exclusively modified clusters. i-j, 

Enrichment plots for ELAVL1 (i) and FMR1 (j) at isoform-specific m6A-m5C modification 

clusters. P values were calculated using a two-sided permutation test. k, Genome browser view of 

the RBIS gene illustrating the relationship between RNA modifications and alternative splicing. 

Colors indicate predicted m6A (green) and m5C (purple) sites within exon 4, and dashed lines 

demonstrate the upstream alternative spliced exon. Source data are provided as a Source Data file. 
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Editor’s Summary 

RNA modifications influence gene regulation, but global mapping was limited. Here, the authors 

introduce ORCA, a deep learning framework using nanopore RNA sequencing to detect multiple 

modification types, revealing isoform-specific patterns and regulatory interactions. 
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