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Abstract

Despite the extensive studies of individual RNA maodifications, the lack of methods to detect
multiple modification types simultaneously has left the global epitranscriptomic landscape and its
underlying crosstalk largely unexplored. Here, we present ORCA (Omni-RNA modification
Characterization and Annotation), a deep learning framework that enables comprehensive
mapping of RNA modification landscape using nanopore direct RNA sequencing. ORCA employs
domain adversarial learning to detect and quantify a wide range of modifications by leveraging
mixed stoichiometry-driven signal and sequence variability between modified and unmodified
nucleotides. It also incorporates a transfer learning module for accurate annotation of modification
types with minimal prior knowledge. Applying ORCA to multiple human cell lines reveals
widespread, isoform-specific modification patterns, as well as intricate cooperative and
competitive interactions among neighboring modification sites. This approach substantially
expands the repertoire of known RNA modification sites and elucidates their spatial organization,
revealing the emerging roles of RNA modifications in splicing regulation. ORCA thus provides
an unbiased and generalizable framework for decoding RNA modification dynamics and their
regulatory complexity across diverse biological contexts.

Introduction

RNA modifications represent a complex and dynamic layer of post-transcriptional regulation, with
over 170 distinct chemical marks that regulates RNA stability?, splicing® 3, translation* °, and
subcellular localization®. While the functions of individual modification such as N6-
methyladenosine (m6A), pseudouridine (W), and 5-methylcytosine (m5C) have been extensively
studied” 8, the combinatorial effects and crosstalk among different RNA modifications remain
largely unexplored. Recent studies have revealed the coordinated roles for m6A and ¥ in
modulating translation®, and a synergistic co-occurrence of m6A and m5C in plants under salt
stress'®, highlighting the emerging role of interaction between different modifications.
Deciphering these interactions is crucial for understanding the multilayered regulatory
mechanisms governing RNA biogenesis and function. However, progress in this area has been
hindered by the lack of transcriptome-wide tools capable of simultaneously detecting and
analyzing diverse RNA modifications and their interactions, limiting our ability to decode the full
regulatory potential of the epitranscriptome.

Recent lllumina-based approaches using immunoprecipitation'*® or chemical treatment'4’
have enabled transcriptome-wide profiling of individual RNA modification types, but are unable
to capture the global epitranscriptomic landscape simultaneously®. Nanopore direct RNA
sequencing (DRS) overcomes this limitation by directly sequencing native RNA molecules and
recording ionic current signals that reflect each nucleotide’s chemical structure® !°. These inherent
signals produce distinct ionic signal profiles and basecalling differences between modified and
unmodified bases, encoding rich information about various RNA modifications within single



molecules?®. However, most existing DRS-based tools are either trained on in vitro synthesized
datasets that are restricted to a few well-characterized modifications such as m6A® 10 21-5 ' m5C10:
23,26 and W 10.20.27 or rely on comparative analyses to detect condition-specific modification
changes?! 2 28 29 Both strategies are unable to resolve the full spectrum of endogenous RNA
modifications or reveal their complex interactions. While a few attempts have been made to
simultaneously identify multiple RNA modifications and their associations® °, these models
remain constrained by the narrow scope of in vitro synthesized modification types, which limits
their generalizability to unseen or uncharacterized modifications. Thus, the systematic and
unbiased characterization of the full epitranscriptomic landscape and its underlying regulatory
crosstalk remains a fundamental challenge.

To address these limitations, we present ORCA (Omni-RNA modification Characterization
and Annotation), a deep learning framework for comprehensive profiling of RNA modifications
and their interactions at isoform and single-molecule resolution. ORCA employs an adversarial
learning strategy to capture both signal- and sequence-level variations arising from the mixed
stoichiometry of modified and unmodified nucleotides, thereby overcoming the limited detection
scope of current DRS-based approaches. Extensive benchmarking shows that ORCA serves as a
powerful tool for unbiased detection and stoichiometric quantification of RNA modifications, even
for modification types absent from the training data, demonstrating ORCA’s broad generalizability
across diverse modification types. Applying ORCA to human cell lines, we expand the known
repertoire of RNA modification sites and uncover the widespread interactions among different
modifications across transcript isoforms. Notably, ORCA reveal intricate cooperative and
competitive relationships between neighboring modification sites, suggesting the complex
crosstalk between RNA modifications and splicing regulation. Collectively, ORCA provides a
robust and versatile approach for mapping the full spectrum of RNA modifications, revealing the
regulatory complexity and isoform-specific crosstalk in the eukaryotic epitranscriptome.

Results

Deep-learning based detection and annotation of various RNA modifications from direct
RNA-seq data

To enable generalized detection of diverse RNA modifications from nanopore direct RNA-seq
data, we developed a deep-learning framework (ORCA) to systematically identify multiple RNA
modification types. Briefly, ORCA first aggregates the raw current signals and basecalled
sequences from all reads aligned to a given genomic region, focusing on a 9-nucleotide window
centered on each candidate site (Fig.1la and Methods). Since RNA modifications exhibit mixed
stoichiometry®”*°, where not all copies of a given base are modified, modified positions should be
characterized by elevated skewness in signal intensity distributions and increased basecalling
errors (Supplementary Fig. 1). Thus, ORCA employes these polymorphic features to detect the



presence of RNA modifications across the transcriptome. Afterwards, ORCA integrates prior
knowledge from established RNA modification databases for effective annotation of a wide range
of modification types.

To accurately predict the presence of RNA modifications based on signal- and base-level
features, we first constructed a robust and diverse training set comprising six types of RNA
modifications from the in vitro synthetic ELIGOS sequences®® (Fig. 1b). Synthetic transcripts
containing one of the six modified bases (m6A, m5C, ¥, m1A, hm5C, and 5fC) or four canonical
bases were randomly sampled and combined to simulate varying stoichiometries and sequencing
depths (Methods). To mitigate k-mer bias from the limited sequence diversity of the ELIGOS
sequences'?, raw sequence or absolute current levels features were deliberately excluded to ensure
that these features could represent generalized modification status without sequence preference. In
total, over 7,000,000 sites were generated, with positions containing >10% modified transcripts
designated as the positive set™. To develop a generalized model capable of accurately predicting
diverse RNA modifications without being restricted to specific types, we implemented a domain
adversarial learning framework®? (Fig. 1b). Here, a feature encoder comprising two LSTM layers
that process the sequence in opposite directions was trained to capture contextual and sequential
features and predict modification presence (modScore) and stoichiometry. Notably, a domain
classifier was adversarially trained to minimize the models’ ability to discriminate between
different modifications using the encoder’s output (Methods). This adversarial training strategy
forced the encoder to learn generalized features that are shared across modifications, ensuring
robust representation of modification status beyond training types while suppressing over-fitting
to the modification types used for training.

Considering occurrence of the same RNA modification across different transcriptomic
positions often share conserved sequence contexts or signal patterns'® 33, we implemented a
transfer-learning strategy for modification type annotation (Fig. 1c). First, an autoencoder was
trained to project all predicted modification sites into a low-dimensional embedding space using
both signal- and base-level features, as well as k-mer frequency profiles that capture motif
preference of modification sites. These modification sites were then provisionally annotated using
public RNA modification databases (RMBase v3.0%* and DirectRMDB®). Subsequently, the
model was fine-tuned to predict the type of annotated modification sites, with unannotated sites
randomly sampled as negative controls to reject low-confidence predictions and suppress false
discoveries. Finally, the classifier’s predictions were transferred to all unannotated sites, enabling
comprehensive and rigorous identification of unannotated RNA modification sites while
minimizing dependence on pre-label training data. This framework ensures that ORCA can
achieve stringent modification sites identification and annotation, with inherent flexibility to
integrate new modification types with the emerging updates of RNA modification resources®® 37,



Performance evaluation of RNA modification detection

To evaluate ORCA'’s performance in detecting various RNA modifications, we first assessed its
sensitivity and accuracy using the synthetic ELIGOS dataset®. Training datasets for six in vitro
synthesized modifications were generated as described above, and 5-fold cross-validation was
applied to evaluate prediction accuracy across modification types. As shown in Fig. 2a and
Supplementary Fig. 2a, ORCA achieved high recall and precision across all six modifications,
with an average area under the precision-recall curve (AUPRC) of 0.95 and average area under the
receiver operating characteristic curve (AUROC) of 0.94. To quantify the overall performance, we
further calculated the F1-score, which balances sensitivity and false discovery rate (FDR) (Fig.
2b). Across all modification types, ORCA consistently attained high F1-scores (0.971-0.976),
reflecting its reliable and accurate detection capability. Given that modified sites represent only a
small fraction of the transcriptome, we further estimated the false discovery rate of ORCA using
an in vitro transcribed (IVT) human mRNA transcriptome3! devoid of endogenous modifications.
As shown in Fig. 2c, ORCA exhibited a low false discovery rate of 2.25% using the default
threshold (modScore > 0.9), demonstrating superior false discovery scores compared with multi-
modification detection tools and comparable performance relative to several modification-specific
methods (Supplementary Fig. 2b). In addition, ORCA demonstrated robust stoichiometry
prediction (Supplementary Fig. 2c), showing its ability to accurately quantify diverse RNA
modifications using the integrated signal- and base-level features, Together, these results
suggested that ORCA provides accurate and unbiased prediction of multiple RNA modification
types.

To assess the performance of ORCA in real-world transcriptomes, we benchmarked its ability
to detect m6A modifications using DRS data from Mettl3 knockout (KO) and wild-type (WT)
mouse embryonic stem cells®. We applied ORCA to predict modification sites in individual
samples and analyzed site-specific differential modification levels after Mettl3 knockout
(Methods). As shown in Fig. 2d, Mettl3-KO cells exhibited a significant global reduction in RNA
modification, with 17.58% of modification sites showed > 0.2 stoichiometric reduction. In contrast,
only 5.78% of sites retained increased modification stoichiometries, consistent with Mettl3’s role
as a primary m6A methyltransferase. For comparison, we evaluated both typical m6A-specific
models (CHEUI-solo®, EpiNano-SVM?3!, m6Anet?? & TandemMod!®) and comparative-based
methods (CHEUI-diff?®, EpiNano-Error?*, Nanocompore?® & xPore?®®) for detecting differential
MBA sites. The m6A sites identified by miCLIP2? and GLORI*® were collected as ground truth
benchmarks. To ensure a fair comparison between mé6A-specific and comparative-based tools, the
performance of m6A prediction was evaluated at both single-base level (only adenosine within
DRACH motifs was considered modified) and 5-mer level (all nucleotides within DRACH motifs
were treated as modified) respectively®®. ORCA achieved an AUPRC of 0.42 at single-base level
(Supplementary Fig. 2d) and 0.43 at 5-mer level (Fig. 2e), matching the performance of state-of-



the-art m6A-specific and comparative-based algorithms. Among these top differentially modified
sites (ranked by change of modScore), ORCA exhibited the highest proportion of sites overlapping
DRACH motifs or modified 5-mers from m6A sequencing methods (Fig. 2f), confirming its high
accuracy in identifying the biologically relevant m6 A modifications.

To further validate the versatility of ORCA, we applied it to detect m5C modifications in HeLa
cells following NSUN2 knockout?, and then evaluated the performance of ORCA and other tools
against m5C sites reported by BS-seq®, bsRNA-seq*® and RNA-BisSeq*. For each tool, changes
in predicted stoichiometry were then calculated, and chi-squared test was employed to measure
the reduction in m5C sites. Among the m5C sites that consistently detected across two biological
replicates, ORCA identified a higher proportion of downregulated sites than most existing tools
(Fig. 2g). While CHEUI-diff reported a marginally higher fraction of downregulated sites, ORCA
uncovered a significantly larger absolute number of m5C sites with statistically significant
downregulation (Fig. 2h and Supplementary Fig. 2e), indicating its strong ability to detect NSUN2-
dependent m5C alterations. Beyond m5C, we further tested ORCA’s ability to detect V¥
modifications in the ribosomal RNA dataset?”. Compared to established tools (Tombo*?,
TandemMod*® and NanoPSU?’), ORCA identified comparable high number of validated ¥ sites
(73/89) to TandemMod (75/89, Fig. 2i) and also showed strong orthogonal overlap with each
approach (Supplementary Fig. 2f), suggesting its accuracy in ¥ detection. Collectively, these
results demonstrated ORCA’s capacity as a effective framework for detecting a wide range of
RNA modifications across different experimental conditions and modification types, including
m6A, m5C and W, and supported its utility for accurate and robust transcriptome-wide RNA
modification discovery superior to canonical modification-specific and comparative-based tools.

ORCA enables zero-shot detection of unseen RNA modification types

A key limitation of current DRS-based RNA modification detection tools is their reliance on
sophisticated training datasets, which typically derived from in vitro-synthesized transcripts'®.
However, many modification types are challenging to synthesize in vitro®, limiting the
development of these modification-specific models. To determine whether our strategy is
applicable to modifications not included in the training set, we comprehensively benchmarked the
performance of ORCA using three complementary approaches: (1) zero-shot prediction of unseen
modifications using the ELIGOS dataset, (2) prediction of modifications absent in training set with
reference RNA modification sequencing data, and (3) evaluation of ribosomal RNA modifications
from mass spectrometry (MS)-based databases (Fig. 3a).

To systematically evaluate the performance of ORCA in detecting unseen RNA modifications,
we first assessed the precision and recall in zero-shot prediction using synthetic ELIGOS
sequences®!. For each target modification, we iteratively excluded it from the training set and



trained ORCA on different combinations of other modifications to evaluate ORCA’s ability to
generalize from arbitrary subsets to unseen targets. For zero-shot prediction of target modifications
the absent in training set, ORCA achieved high prediction accuracy ~ 90% across all modification
types and maintained considerable recall rates > 30% for most modifications (Fig. 3b). Both
accuracy and recall increased with the inclusion of additional training modification types (Fig. 3b
and Supplementary Fig. 3a), indicating that ORCA can effectively extract generalized cross-
modification features. In addition, we further evaluated ORCA’s ability to estimate stoichiometry
for previously unseen modifications. Strikingly, our adversarial learning framework accurately
encapsulated stoichiometry in the zero-shot prediction of all six modification types, achieving a
strong linear correlation (average Pearson’s correlation coefficient = 0.76) between predicted and
ground-truth stoichiometries (Supplementary Fig. 3b). These results confirmed that ORCA can be
effectively adapted to detect and quantify unseen RNA modifications without requiring prior
training data for these modification types.

To further evaluate ORCA’s ability to predict unseen RNA modifications transcriptome-wide,
we employed three different high-throughput RNA modification sequencing datasets to validate
its applicability. First, we performed ONT direct RNA-seq and m6A-SAC-seq’ on the same
mouse brain sample. To test ORCA’s capacity for zero-shot prediction, m6A was excluded from
the training set to construct an m6A-absent model, which was then used for transcriptome-wide
modification prediction. In total, 1,000 m6A sites detected by m6A-SAC-seq were covered in the
nanopore DRS data, of which 70.5% were confidently predicted as modified (modScore > 0.9) by
the ORCA model trained without m6A-specific data. Moreover, these identified m6A sites showed
significantly higher modification probabilities than randomly sampled DRACH motifs (p < 1X
1073%, Wilcoxon rank-sum test; Fig. 3c), confirming ORCA’s capacity to detect transcriptome-
wide m6A without prior training on this modification.

Similarly, we further evaluated ORCA’s ability to detect 2°-O-methylation (Nm) and inosine
() modifications which were not included in the training set. For Nm detection, we analyzed public
DRS data from mESCs cells®! and benchmarked ORCA predictions against Nm sites identified by
2°-OMe-seq*. As shown in Fig. 3d, ORCA accurately predicted Nm modifications, with 74.4%
of reference Nm sites successfully identified and an overall significant enrichment of reference
Nm and random control sites was also observed among ORCA’s prediction (p = 1.30 X 102,
Wilcoxon rank-sum test). For inosine prediction, we employed public DRS data from wild-type
and FY-ADAR?2 yeast strains engineered to express human ADAR2, which introduce A-to-I
editing in yeast without an endogenous ADAR system®. A-to-I editing sites was identified as
reference using Illumina RNA-Seq data from the same project (Methods), and differentially
modified sites between WT and hADAR2-expressing yeast were identified using ORCA. As
expected, reference inosine sites showed significantly higher modification scores in hADAR2
yeast, whereas no such patterns were observed for randomly sampled background adenosines (Fig.



3e). Taken together, these results indicated the ability of ORCA to detect previously unseen RNA
modifications at the transcriptome scale, even in the absence of modification-specific training
datasets.

Given that ribosomal RNA harbors a diverse array of RNA modifications — many of which
are undetectable by either modification-specific or comparative-based tools (Fig. 3f), we employed
human and yeast ribosomal RNA sequencing datasets to evaluate ORCA’s performance in
predicting this broader spectrum of RNA modifications. Across human 28S and 18S rRNAs,
ORCA successfully identified 78.1% of the 224 modification sites spanning 13 chemically distinct
modification types (e.g. N4-acetylcytidine (ac4C) and mlacp3¥) supported by SILNAS mass
spectrometry®®. In parallel, a low false discovery rate (10.0%) was observed for unmodified bases,
indicating high specificity in distinguishing modified from unmodified sites. Similarly, ORCA
achieved comparable performance on yeast 18S and 25S rRNAs, accurately predicting 79.8% of
orthogonally validated modifications. In additional,  further supporting its robustness in
identifying a wide range of RNA modification types across species (Supplementary Fig. 3c-d).

Furthermore, we evaluated ORCA’s ability to detect non-natural 4-thiouridine (4sU)
modifications. Applying ORCA to K562 4sU pulldown and DMSO control samples*’, ORCA
detected significantly elevated modification scores for U-containg 5-mers in 4sU pulldown
samples compared with non U-containing controls (p = 1.38X10%, one-sided Wilcoxon rank-
sum test; Supplementary Fig. 4a). The predicted 4sU levels also strongly correlated with nascent
RNA expression measured by orthogonal Illumina sequencing (p = 1.67 X 107®, Supplementary
Fig. 4b), demonstrating ORCA’s sensitivity to 4sU incorporation. Taken together, these results
demonstrate that ORCA can overcome the limitations of modification-specific models, enabling
transcriptome-wide discovery of unseen RNA modifications through its generalized adversarial
training strategy.

ORCA uncovers the transcriptome-wide landscape of a broad range of modifications

The comprehensive identification of diverse RNA modifications is essential for understanding the
post-transcriptional processing of RNAs. However, current DRS-based tools typically rely on
modification-specific models that target a limited subset of modifications or utilize comparative
strategies to detect changes between different condition pairs. These limitations make it
challenging to profile a broad spectrum of RNA modifications in individual samples. To further
demonstrate ORCA’s ability to simultaneously detect multiple RNA modifications per sample, we
applied it to the previously described Mettl3-KO mESCs dataset. All predicted modification sites
were ranked by modScore and compared against known modification sites in the RMBase 3.0
database®*, as well as sites predicted by modification-specific tools. Among the top-ranked
predictions, over 40% were supported by either public database or ONT-based RNA modification



detection tools (Fig. 4a), indicating the high reliability of ORCA’s prediction. Specifically, a
comprehensive catalog of well-characterized modifications including m6A, m5C, inosine (I), ¥,
m7G, m1A and 2'-O-methylation (Nm) were detected within the top 10,000 predicted sites (Fig.
4b). For example, 41.9% and 30.9% of predicted sites in mMESCs and HeLa cells were supported
by m6A sites, while 16.1% and 5.2% of sites were supported by ¥ modifications. This high
concordance underscored ORCA’s ability to accurately resolve multiple RNA modifications in a
single analysis.

For instance, ORCA identified adjacent modification sites in the 3> UTR of the Lars2
transcript, where one Nm, two m5C and five ¥ modification sites were consistently detected in
both WT and Mettl3 KO mESCs. Notably, a previously unannotated site exhibited a dramatic
reduction in modScore upon Mettl3 knockout, suggesting it may represent an unseen m6A site
(Fig. 4c¢). Similarly, two m6A sites in the 3 UTR of Ets2 transcript were robustly detected in WT
mMESCs but were absent in Mettl3 KO samples, consistent with substantial alterations in both
sequence- and signal-level features following loss of the key m6A methyltransferase complex (Fig.
4d). Moreover, these predicted sites were also consistently supported by both modification-specific
and comparative-based algorithms. We further extended this analysis to WT and NSUN2 KO HelLa
cells. For exemplary modification sites in the 3> UTR of RPL13A and in the small nuclear RNA
RNA5-8SN1, ORCA revealed a selective reduction in m5C, but not in m6A or ¥ levels, consistent
with the specificity of NSUN2 as an m5C methyltransferase*’ (Supplementary Fig. 5). Taken
together, these results demonstrated that ORCA enables the simultaneous detection of diverse
RNA modifications while accurately resolves biologically relevant stoichiometry changes upon
perturbation of specific modification writers.

Transfer learning of sequence and signal features enables accurate discovery of previously
unannotated RNA modification sites.

Based on accurate modification presence prediction, we further developed a transfer learning
framework to annotate modification types using both sequence- and signal-level features of high-
confidence sites curated from public databases (Fig. 5a and Methods). In addition to the features
used for modification presence prediction, we incorporated k-mer occurrence frequencies to
capture sequence similarity specific to each modification type. Given that chemical modifications
affect current signals across a 5-6 nucleotide window as the strand passes through the nanopore?®,
a multi-task learning model was implemented to simultaneously predict both modification types
and positional phase. The prediction results were then filtered based on the consistency between
predicted modification types and the corrected nucleotide phases, and only predictions where the
modification types matched the corresponding nucleotide position were retained to ensure accurate
modification assignment. To avoid over-assignment of uncharacterized modifications to known
categories, unannotated sites were also sampled as negative controls during training to ensure



stringent and reliable identification of known modifications. Finally, the trained model was
transferred to predict modification types for previously unannotated sites, enabling the discovery
of RNA modification sites absent from existing databases. Overall, this approach balances the
accuracy of modification type prediction with the sensitivity to uncover epitranscriptomic features.

To rigorously evaluate the performance of RNA modification annotation, ORCA was
employed to present modification presence using a K562 DRS dataset from the SGNex project*®.
A total of 48,377 sites across 7 RNA modification types were then annotated with high confidence
NGS-supported sites from RMBase 3.0%* and DirectRMDB®, and the modification annotation
model was trained as described previously (Fig. 5a). In cross-validation, ORCA achieved > 90%
precision and > 40% recall for most modification types (Fig. 5¢-d), demonstrating robust accuracy
and sensitivity. To further assess the specificity of modification type prediction, we iteratively
masked each modification type during training and quantified the misclassification of masked sites
into other categories. As shown in Fig. 5e and Supplementary Fig. 6a, ORCA maintained an
average of > 0.83 accuracy across all modification types. Moreover, ablation of the background
negative-control class markedly increased false discovery (Supplementary Fig. 7), confirming that
our strategy ensure accurate and stringent modification type prediction while minimize false
positive assignments of unannotated modifications.

The trained model was subsequently applied to predict modification types across all
unannotated modification sites. In total, 42,449 previously unannotated RNA modification sites
were identified, whose gene body distributions closely consistent with those in the established
databases (Fig. 5f). Notably, ORCA largely expanded the catalog of current modification sites,
annotating 29% additional m6A sites and dramatically increasing the low-abundance
modifications: > 400% more m5C, Nm, ¥ and inosine, > 1,030% more m7G, and > 178% more
m1A sites compared to existing annotations (Fig. 5g). To validate these predictions, we then
performed de novo motif analysis using XSTREME®C on previously unannotated m5C sites. Two
canonical m5C motifs CUCC (88.3% of ORCA-annotated sites) and CGGG (8.8% of ORCA-
annotated sites) were identified, aligning with known NSUN6°! and NSUN2-dependent®® m5C sites.
For example, ORCA predicted an m5C site in the CDT1 3’ UTR that was absent in both RMBase
3.0 and DirectRMDB, but was independently validated by UBS-seq'® in HeLa cells (Fig.5i).
Besides, ORCA also demonstrated high specificity for annotating m6A sites, with 26.9% sites
supported by GLORI*®, which was consistent with the validation rate of database-curated m6A
sites (37.6%, Supplementary Fig. 6b). For other modifications, high validation rates were also
observed for ¥ (BID-seq'*), m7G (20% overlap with QKI CLIP-seq*! peaks), and m1A (18.5% by
m1A-seq®®) (Supplementary Fig. 6c-e). Taken together, these results demonstrated the
effectiveness of ORCA’s label-transfer learning strategy in discovering and annotating RNA
modification sites that were previously unannotated in existing databases with high confidence.

Furthermore, we evaluated whether database composition introduces biases associated with
modification detection technologies or cell line origins. Although cross-technology overlap for the
four major modification types was generally limited (Supplementary Fig. 8a-b), ORCA’s



annotation model trained on individual assays achieved high recall within orthogonal datasets, and
performance further improved when complementary assays were incorprotatd while maintaining
low FDR (Supplementary Fig. 8c-d). Consistent results were observed in cross cell-line validation,
where restricting training to a single cell linereduced annotation sensitivity but did not affect
precision or FDR (Supplementary Fig. 9). Together, these results demonstrate that limited overlap
across technologies or cell lines does not compromise annotation accuracy, and that integrating
multiple public resources effectively mitigates technology-specific biases and improves sensitivity
without sacrificing precision.

Characterization of RNA modification landscape and its regulatory crosstalk in human cell
lines

To demonstrate the applicability of our method, we applied ORCA to characterize the RNA
modification landscape in human cell lines DRS data from the SGNex project*. In summary, a
total of 98,586 sites were detected across all samples, with 10,954 modification sites per cell line.
Notably, 70.2% of these sites were consistently detected in at least two cell lines (Fig. 6a), which
is consistent with the reported stable m6A modifications shared across human cell lines?®. To
further investigate the spatial associations between different modification types, we further
calculated the genomic distances between adjacent modifications. Strikingly, a substantial
proportion of modifications (33%) occurred within 20-nt of each other (Supplementary Fig. 10a).
We therefore clustered proximal sites using a 20-nt window, yielding 13,633 clusters with an
average of 2.85 modification per cluster (Fig. 6b and Fig. 6¢). As m6A was the most abundantly
detected modification, most clusters were m6A-enriched, while a high degree of association
between m6A and other modifications, such as m5C and m1A, was also observed, highlighting
the complex spatial organization and potential crosstalk among neighboring modification types
(Fig. 6d).

To further investigate the regulatory interplay between these neighboring RNA modifications,
we applied an expectation-maximization (EM)-based model to estimate the single-molecule co-
occurrence patterns within modification clusters (Fig. 6e and Methods). Among 443,361
modification clusters, 7,719 exhibited significant co-modification, while 39,906 were exclusively
modified with competitive exclusion (Supplementary Fig. 6b). First, cooperative modified clusters
were prioritized for downstream analysis. As shown in Fig. 6f, frequent co-occurrence of different
modification was substantially observed, with m5C and m6A emerging as the most prevalent
combinatorial pattern. To further validate these predictions, we leveraged m6A-SAC-seq and
m5C-TAC-seq™ datasets to extract short-read level co-modification evidence. For instance, a
cooperative modification of a pair of m6A sites spaced 8 nucleotides apart in the 3° UTR of
DNAJBL1 was identified in IM95 DRS data and independently confirmed in the HeLa m6A-SAC-
seq data (Fig. 6g). Similarly, two co-occurring adjacent m5C sites in the 3’UTR of HDGF were



detected in Hct116 DRS data, which was also validated by HeLa m5C-TAC-seq (Supplementary
Fig. 6¢). These results demonstrated the cooperative modification between different types and also
validated accuracy of ORCA in resolving spatial co-existence of neighboring RNA modifications
at single-molecule resolution.

To investigate the interplay between RNA modifications and splicing regulation, we then
focused on exclusively modified clusters that exhibited significant isoform-specific changes in
K562 cells, and integrated ENCORE eCLIP-seq data®® of K562 cells to assess regulatory
associations. The binding patterns of RNA-binding proteins, including splicing factors and RNA
modification associated proteins (writers, erasers, and readers, WERS) within these modification
clusters were further calculated. Notably, many isoform-specific modification clusters, particularly
those associated with m6A, showed significant enrichment of splicing factors and modification-
associated WERs, suggesting the widespread coupling between m6A modifications and alternative
splicing events (Fig. 6h). For example, two splicing factors ELAVL1** and FMR1>® were
significantly enriched in isoform-specific m6A/m5C modification clusters, consistent with the
FMR1’s preference for binding m6A-modified RNAs®® * (Fig. 6i-j). In one case, transcript-level
analysis of RBIS revealed an isoform-specific exclusion pattern between neighboring m6A and
m5C sites at exon 4 (Fig. 6k). m6A-modified reads were strongly associated with an upstream
skipped exon, whereas the exon was consistently associated retained in m5C-modified reads.
Furthermore, strong eCLIP-seq peaks for splicing factors MBNL1 and the RNA-binding protein
FMR1 were also detected in the same region, consistent with their established roles in alternative
splicing and m6A-mediated splicing regulation®®. Together, these findings demonstrate that ORCA
enables systematic characterization of the interactions between RNA modifications and splicing,
offering a powerful platform for dissecting the multilayered regulation of eukaryotic transcriptome.

Discussion

In this study, we present a comprehensive computational framework for mapping global RNA
modification landscape and regulatory crosstalk using nanopore direct RNA sequencing data.
ORCA employs deep-learning algorithms for unbiased and generalized detection of RNA
modification presence and enables accurate modification-type annotation by incorporating prior
knowledge of validated sites. Comprehensive evaluations demonstrated that ORCA reliably
detects and quantifies previously uncharacterized modification sites and revealed its applicability
in uncovering complex interactions between neighboring modifications and isoform-specific RNA
modification regulation.

Comprehensive detection of the full spectrum of RNA modification is essential for
understanding their roles in RNA biology and epitranscriptomic regulation®® %, However, current
high-throughput sequencing-based approaches rely on modification-specific antibodies or
chemical reactivity, substantially limiting their generalizability'*"}’. Despite rapid advancements



in DRS-based algorithms for modification detection or modification-aware basecalling, existing
methods remain constrained by their dependence on modification-specific training sets® 0. 21-27. 31,
Meanwhile, comparative profiling of nanopore direct RNA-seq data across different experimental
conditions have also enabled identification of RNA modification changes without modification
type limitatiion?: 28 2 put also overlook the unperturbed modifications thus restricting the
analyses to condition-specific modification sites. Furthermore, modification types could only be
inferred from experimental setup, which risk bias due to complex interaction between
modification®,

To address this limitation, ORCA leverages the mixed stoichiometry nature of RNA
modifications and detects their presence based on variability in signal- and sequence-level features
arising from the co-existence of modified and unmodified bases. Specifically, an adversarial
learning strategy is employed to ensure unbiased detection of diverse modification by preventing
modification-specific overfitting. Through comprehensive evaluation, we demonstrated that
ORCA enables accurate zero-shot detection and quantification of various RNA modifications
without requiring a corresponding training dataset. highlighting its broad applicability for profiling
the transcriptome-wide RNA modification landscape. Furthermore, a transfer-learning based
annotation assigns modification types by aligning signal- and sequence-level features of identified
sites with prior knowledge from validated databases, enabling accurate co-profiling of multiple
modification types. As metabolic labeling and chemical-based sequencing techniques continue to
evolve, ORCA can be further extended to incorporate these reference sites, facilitating
transcriptome-wide characterization of emerging RNA modifications without requiring extensive
synthesis of in vitro transcription experiments.

Nanopore-based full-length RNA sequencing approaches have been widely applied to resolve
transcript isoform landscape across diver RNA classes®® 3 Beyond transcriptome-wide
characterization of RNA modification sites, single-molecule RNA maodification identification is
critical for uncovering the underlying regulatory crosstalk between different modifications® 22 23,
ORCA incorporates an expectation-maximization (EM)-based model to infer single-molecule
modification states and assess competitive or cooperative interactions among neighboring
modification sites. Applied to human cell lines, ORCA substantially expanded the known catalog
of RNA modification sites, increasing the number of both well-characterized m6A and other low-
abundance modifications. Notably, ORCA revealed the widespread interplay between different
RNA maodifications and uncovered the potential regulatory crosstalk between splicing factors and
modification-associated RNA-binding proteins in shaping isoform-specific modification patterns.
These findings highlight ORCA as a powerful platform for dissecting the complex regulatory
architecture of the RNA epitranscriptome at isoform and single molecule resolution.

Recent studies have employed deep-learning model for detecting multiple RNA modifications.
In particular, TandemMod employs deep-learning models to identify multiple RNA modifications



(including m6A, m1A and m5C) at the single-read level, and further incorporate transfer learning
to predict additional modification such as m7G, hm5C and W using limited training examples™®.
While this approach enables simultaneous detection of multiple RNA modification types, it still
relies on IVT-derived training sites, which restricts its ability to capture the full RNA modification
landscape. In contrast, ORCA leverages a domain-adversarial learning strategy to infer
modification presence based on signal polymorphism, enabling the detection of a wide range of
RNA modification types without requiring corresponding IVT training sets. However, this
approach requires sufficient read depth and is less effective at low-coverage sites (<10 reads).
Further work integrating both strategies may enable robust de novo modification detection at single
molecule level.

In addition, recent advances in RNA-004 chemistry have largely improved ionic signal quality
and basecalling accuracy®*. To assess ORCA’s compatibility with the new sequencing chemistry,
we trained an RNAO004-specific model using the IVT curlcake dataset® (Supplementary Fig. 11a).
Compared with Dorado, ORCA achieved similarly high performance for the three basecallable
modification types, while also maintaining high accuracy on the remaining four modification types
that Dorado could not detect (Supplementary Fig. 11b-c). Furthermore, ORCA exhibited reliable
zero-shot prediction performance for these modification, consistent with the results obtained on
RNAO0O02 datasets (Supplementary Fig. 11d).We additionally generated a mouse brain RNA004
dataset and compared de novo mM6A predictions between RNAO002 and RNAO04 using
corresponding non-m6A models. ORCA produced highly concordant m6A signals across
chemistries (Supplementary Fig. 11e-f), demonstrating stable and robust de novo detection under
RNAO004 chemistry (Supplementary Table 1).

Despite these advantages, ORCA also faces several limitations. First, ORCA requires
sufficient sequencing depth to robustly estimate modification-induced feature variability.
Although its performance becomes largely insensitive to coverage beyond a certain threshold
(Supplementary Fig. 12), reliable detection remains challenging at very low read depths (<10 reads)
or when attempting single-read inference. In additional, the ELIGOS training dataset exhibited
limited 9-mer diversity, which might introduce sequence composition biases and affect
generalization. Cross-dataset evaluation using the in vitro transcribed epitranscriptome (IVET)
revealed that IVET-derived model achieved superior better cross-dataset prediction performance
(Supplementary Fig. 13), indicating that greater sequence diversity in the training set improves
ORCA’s prediction performance across diverse sequence contexts. Finally, each ELIGOS read
contains only a single modification type, resulting in that no two modification types co-occur
within the same read in the training dataset, which could impact the model’s performance to predict
co-occurring modifications in very close proximity.

In summary, ORCA comprehensively captures the full RNA modification spectrum and
reveals the widespread crosstalk between different modifications and splicing regulation. This



framework enables unbiased profiling of RNA modifications without requiring extensive IVT
training data, providing robust identification of various RNA within individual samples and
detection of biologically relevant changes across experimental conditions. By facilitating
simultaneous identification, quantification and annotation of diverse RNA modifications at
isoform and single-molecule resolution, ORCA uncovers the cooperative modification patterns
among neighboring modification sites and highlights the potential regulatory role of adjacent RNA
modifications and RBPs in isoform-specific splicing and modification dynamics. Overall, ORCA
provides a powerful computational strategy towards the comprehensive elucidation of the
RNAome, offering a foundation for understanding RNA biology at unprecedented resolution.



Methods
Ethics statement

All experimental procedures involving animals in this study were carried out in accordance with
the guidelines for procurement and use of laboratory animals and have been approved by the
Institutional Animal Ethics Committee at the Institute of Zoology, Chinese Academy of
Sciences.

Animal experiments

All mice used in this study were adult C57BL/6 mice and were purchased from SiPeiFu
Biotechnology. Two adult mice were used for brain tissue dissection, with one mouse used for
RNAO002 sequencing and the other for RNA004 sequencing. Animals were maintained under
conventional specific pathogen-free conditions and a 12-h light/12-h dark cycle at 25 ° C and
40 - 60% humidity.

RNA isolation and nanopore direct RNA sequencing

Total RNA was extracted from two healthy adult mice brain using TRIzol (Invitrogen) according
to the manufacturer’s instructions. RNA integrity and quality were assessed using the Agilent 5200
Fragment Analyzer System. Nanopore direct RNA-seq library was prepared using the Direct RNA
Sequencing Kit (SQK-RNAO002) from Oxford Nanopore Technologies following the
manufacturer’s protocol and sequenced on an R9.4.1 flow cell (FLO-MIN106D) using a
MinlON MKk1B device for 72 hours. An adult mouse brain direct RNA-seq library was also
generated using the SQK-RNAO0O04 sequencing kit and sequenced according to the manufacturer’s
instructions on an FLO-MINOO4RA flow cell for 72 hours.

M6A-SAC-seq and data analysis

For m6A-SAC-seq experiments, 1 pug of total RNA was subjected to ribosomal RNA depletion
using the RiboErase kit (human/mouse/rat, Kapa Biosystems). The rRNA-depleted total RNA was
used directly for m6 A-SAC-seq library preparation following the protocol described by He et al'’.
Briefly, m6A modifications were selectively converted into allyl-labeled derivatives by MjDiml1,
followed by iodine-induced intramolecular cyclization. These modifications were subsequently
converted into sequence mutations during by HIV-1 RT reverse transcription and detected via
Illumina sequencing.

Sequencing reads were trimmed using Cutadapt® (v2.10) and Fastp® (v0.23.4) Reads aligning
to rRNA sequences were removed using Bowtie2%® (v2.3.4.3) and Samtools®® (v1.18). Cleaned



reads were then mapped to the mm10 reference genome using STAR (v2.7.10b). PCR duplicates
were collapsed using UMICollapse’ (v1.0.0), and deduplicated BAM files from biological
replicates were merged with Samtools. Strand-specific BAM files were generated and processed
with Samtools mpileup. Somatic variants were called using VarScan’? (2.3.9), and candidate m6A
sites were identified based on mutation profiles and the presence of DRACH motifs.

Nanopore data preprocessing and feature extraction

The GRCh38 (human) and GRCm38 (mouse) reference transcriptome were obtained from the
Ensembl database. For RNAOO2 data, raw nanopore fast5 files were basecalled using Guppy
(v6.3.8) with rna_r9.4.1 70bps_hac model. For RNAO04 data, raw nanopore pod5 files were
basecalled using Dorado (v1.1.1+e72f1492) with rna004_130bps_hac@v5.2.0 model. POD5 files
was transferred to BLOWS format using bluecrab’ (v0.4.0) p2s and slow5tools™ (v0.8.0) merge
commands. Basecalled reads were then aligned to the reference transcriptome using Minimap2 ™
(v2.21, with the parameters ‘-ax splice -N 0 -uf -k14 --cs --secondary=no’). The alignment results
were processed with samtools mpileup (v1.11) to generate per-base summary statistics. lonic
current signals were aligned to the reference sequence using the f5¢’® eventalign (v1.11), an
accelerated implementation of Nanopolish”’, with the parameters ‘--min-mapq 0 --rna --signal-
index --scale-events --secondary=no --collapse-events’ for RNA002 and ‘--pore RNAQ0O4 --min-
mapq 0 --rna --signal-index --scale-events --secondary=no --collapse-events’ for RNA004 reads.

For modification presence prediction, both signal-level and sequence-level features were
extracted within a £2 k-mer window surrounding each candidate site. For signal-level features,
raw electrical events from the eventalign output were standardized using the method defined in
Nanopolish. Specifically, each event’s mean signal level was normalized by subtracting the
expected reference mean and then dividing by the reference standard deviation. This normalization
accounts for variation in signal intensity across different sequence contexts. The standardized
signal values from all reads aligned to the same genomic position were then aggregated and
interpolated into a fixed-length vector of 50 values to ensure consistent input dimensions for the
model. For sequence-level features, rate of insertions, deletions, and mismatches, as well as
statistical metrics including the mean, median, and standard deviation of sequence quality scores
of all aligned at each position were extracted based on the ‘samtools mpileup’ result.

For modification type annotation, three categories of features were included as input for the
transfer-learning model. K-mer occurrence features were derived from the frequency of all 256
possible 4-mer motifs within an 11-nucleotide window centered on each modification site. Besides,
signal-level features were computed using the event level means and standard deviations across
the window surrounding each modification site. Then a Gaussian mixture model was applied to
partition each feature into divide into modified and unmodified clusters, and the mean, variance,
and covariance of each component were extracted as model input. Finally, sequence-level features
were obtained using the same strategy as described above.



ORCA model design

ORCA comprises two neural network models designed for predicting the presence of RNA
modifications and inferring their types. For modification presence prediction, ORCA adopts a
domain-adversarial neural network architecture composed of an encoder and two classifier
branches. The encoder utilizes a bidirectional LSTM network to capture contextual and sequential
dependencies from both sequence- and signal-level features within a 11-nucleotide window
surrounding each candidate site. The encoded representations are then simultaneously passed into
two parallel branches: (1) a modification predictor for predicting modification presence (modScore)
along with an estimate of stoichiometry; and (2) a domain classifier with a gradient reversal layer
aims to distinguish between different RNA modification types. The model is trained adversarially
to optimize encoder and modification predictor to accurately detect modification presence, while
the encoder is simultaneously trained to learn representations that minimize the performance of
domain classifier, ensuring a generalizable representation of modification presence across a
diverse range of modification types without introducing modification-specific bias.

For modification type inference, ORCA employs a transfer-learning framework consisting of
an autoencoder and two classifier modules. During the pretraining phase, the autoencoder learns
the global low-dimensional representation of all predicted modification sites. The encoded features
are subsequently passed to multi-task prediction to produce probabilities corresponding to different
modification types and phase represent the exact modification position in the input window. Then,
only modification type predictions that corresponding to the base at the inferred modification
position are retained as valid outputs.

Model training

To train the presence prediction model, we generated a labeled dataset based on the public ELIGOS
resource. Specifically, six in vitro transcribed RNA samples containing individual modifications
(ml1A, m6A, m5C, hm5C, 5fC, and W) and a control sample composed of only canonical bases
were obtained. For each modification type, raw nanopore reads were aligned to the reference
sequence using Minimap2. Then, modified and unmodified reads were randomly sampled and
combined to generate 3,000 training samples at varying sequencing depths (10-200) and
modification rates (0-1) of individual modification site. The sequence- and signal-level features
were extracted as described above, resulting in a training set that simulate the realistic features of
RNA maodification types and stoichiometry levels. In total, over 7 million training samples were
generated. Positions with >10% modified reads were labeled as positive samples. For each
modification type, the dataset was randomly split into training and testing set at 4:1 ratio. Model
optimization was conducted using the AdamW optimizer with a learning rate of 0.0005. The loss
functions were defined as follows: negative log-likelihood loss (NLLLoss) for modification



presence prediction, NLLLoss for domain label prediction, and mean squared error (MSELo0ss) for
stoichiometry regression.

To train the modification type annotation model, we utilized 25 direct RNA-seq datasets
generated from the MinlON/GridION platform, spanning nine human cell lines from the SGNex
project*®. RNA modifications were first identified using the ORCA prediction module with a
modScore threshold of 0.9 to ensure high-confidence predictions. Predicted modification sites
were then annotated based on the presence of NGS-supported modifications from RMBase v3.03*
and DirectRMDB® using a distance threshold of =+2 nucleotides. The autoencoder was initially
trained on all predicted modification sites using the AdamW optimizer with a learning rate of 0.002
and MSELoss to learn global feature representations. The model was then fine-tuned using the
annotated subset to enable prediction of both modification type and phase. These downstream tasks
employed cross-entropy loss and were optimized with AdamW at the same learning rate. For each
modification type, the labeled dataset was split into training and testing set in an 1:4 ratio. To
mitigate class imbalance, each mini-batch was constructed to contain similar numbers of samples
from each modification type, preventing the loss function from being dominated by any single
class. To avoid over-assignment of uncharacterized modifications to known categories, we also
included 3,000 unannotated sites as negative controls during training to ensure a stringent and
reliable identification of known modification types.

EM based prediction of modification interactions

ORCA outputs read-level modification predictions for neighboring modification pairs through the
EM-based model, which enables assessment of read-level linkage or mutual exclusivity between
modification events. After performing RNA modification presence and type prediction and across
all human cell line samples, only high-confidence sites detected in at least two samples were
retained for downstream analysis. To define local modification clusters, transcriptomic distances
between neighboring modification sites were calculated, and sites within 20 nucleotides were
iteratively merged into the same cluster. To minimize potential signal interference caused by
adjacent modifications, any neighboring sites located within 4 nucleotides of each other were
excluded from clustering.

To evaluate potential co-modification between modification sites within each cluster, we
employed a Local Outlier Factor (LOF) score-based strategy to infer the read-level modification
states. For each site, raw signal features including event level mean, standard deviation, and dwell
time were extracted from a +5 k-mer (15 nucleotide) window. LOF scores were computed for each
read and normalized to the range [0, 1]. For every pair of neighboring modification sites, each read
was represented as a two-dimensional coordinate (xi, yi), where x; and y; are the normalized LOF
scores at the two positions, respectively.

Given the site-specific distributions of LOF scores, we employed an expectation-
maximization (EM) algorithm to classify each read into one of four canonical modification states



including: do centered at (0,0) for unmodified reads; di centered at (1,1) for dual modification; and
d> and ds centered at (1,0) and (0,1) respectively for single-site modifications. Each state dj was
assigned an initial mixing weight ;= 0.25. In the expectation step, the posterior probability that
read ri (Xi, i) belongs to state djwas calculated as:

- 0; - P(r;]d;) (1)
TR Ok P(rildy)

where the likelihood P(r;|d;) = Euclidean(r;, d;) X s(r;, d;) was defined as the product of

the Euclidean distance between ri and the center of dj, and a dispersion score s(r;, d;), such that:
s(rypdo) = s(rydi} =1—|x; — yil @)
s(rpdy) =s(rpds}=1—|x; +y; — 1]
This formulation captures both the geometric proximity of the read to a canonical
modification state and the consistency of LOF across the two sites.
In the maximization step, the mixing weights were updated as the mean of the posterior
probability across all N reads:
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The EM process was iteratively repeated until convergence, defined by the change in posterior
weights falling below a predefined threshold. After convergence, each read was assigned to the
modification state with the highest posterior probability y;;, enabling stratified analysis of co-
modified, mutually exclusive, and unmodified read populations within each cluster.

To further quantify the interaction between each pair of modification sites, we defined a
linkage score for each candidate pair as:

Linkage score = (6, — 6,) + (6; — 053) 4)

A modification sites was considered cooperatively modified if 61 > max (6, 83), indicating an
enrichment of simultaneously modified reads. Conversely, modification site pairs were considered
as mutually exclusive if the linkage score was less than -0.2 and 61 < min (62, 8s), suggesting that
the two modifications tend not to co-occur in the same read.

False positive rate evaluation

To evaluate the false discovery rate of ORCA, the IVT human mRNA transcriptome were
downloaded from the SRA database (accession number SRP166020). ORCA was employed to



predict the modification presence in the IVT transcriptome. Among 7,576,597 sites with coverage
great than 10, where only 2.25% (170,708) of sites were predicted as modified using the default
modScore threshold of 0.9. TandemMod, EpiNano-SVM, NanoPSU and m6ANet were also
applied to the same IVT transcriptome. For each tool, the cumulative distribution function of
prediction scores were calculated, and false discovery performance was measured using the area
under the cumulative distribution curve.

Model benchmarking

To evaluate ORCA’s performance, we benchmarked it against several representative tools for
direct RNA modification detection using publicly available datasets. For m6A prediction, we
included m6Anet?? (v2.0.1), TandemMod? (v1.1.0), EpiNano? (v1.2), CHEUI? (v0.1), xPore?®
(v2.1), Nanocompore?® (v1.0.4). For m5C detection CHEUI, TandemMod and xPore were also
employed. For ¥ detection, Tombo (v1.5.1) and NanoPSU?’ (v1.0) were used. Benchmarking was
mainly performed on three datasets: Mettl3 knockout and wild-type (KO/WT) mouse embryonic
stem cell (MESC) samples for m6A detection (SRP166020), NSUN2 KO/WT HeLa samples for
m5C (SRP393373) and a mixed rRNA sample for ¥ detection (SRP329477). All sequencing reads
were aligned using Minimap2. Most tools utilized using transcriptome-based alignment, except
for EpiNano, which required genome-based alignment. For signal-to-reference alignment, most
tools employed the eventalign module for f5¢’® or Nanopolish’” with tool-specific parameter
configurations. However, TandemMod used ‘tombo resquiggle’ command to map raw ionic
signals to the basecalled sequences.

MO6A detection in mMESCs (Mettl3 KO/WT) samples

To benchmarking m6A detection, we evaluated several tools using the Mettl3 knockout and wild-
type mouse embryonic stem cell (mMESC) sample. Experimentally detected m6A sites were
obtained from the GEO database, using the union of GLORI*® (GSE210563) and miCLIP2*2
(GSE163491) datasets as ground truth references.

For EpiNano (v1.2 SVM & Error mode), we first converted BAM files into TSV format using
sam2tsv  from jvarkit (v2023.09.07) and extracted basecalling error features with
Epinano_Variants.py script. Then, Epinano_DiffErr.R and Epinano_Predict.py were used to
identify differentiated modified sites across samples and to directly predict m6A modifications,
respectively. For CHEUI (v0.1 diff & solo mode), feature extraction was performed using ‘CHEUI
preprocess --m6A’, then followed by direct m6A prediction using CHEUI predict modell.py and
CHEUI_predict_model2.py. Additionally, signal-level differentiated analysis between samples
was carried out using CHEUI_differentialRNAMod command. For m6Anet (v2.0.1), input data
were preprocessed using ‘méanet dataprep’ command, and m6A sites were inferred with ‘m6anet
inference’. For Nanocompore (v1.0.4), event-level signal alignments were first collapsed to the



site level using ‘nanocompore eventalign collapse’ command, and sample comparisons were
performed using ‘nanocompore samplcomp’. For TandemMod, raw signal features were extracted
from  Tombo-resquiggled  fast5  files using  extract _signal_from_fast5.py  and
extract_feature_from_signal.py, and modification predictions were performed using
‘TandemMod.py --run_mode predict’. For XPore (v2.1), signal-level features were extracted using
the ‘xpore dataprep’ command, and differential modification analysis was performed with ‘xpore
diffmod’. For ORCA, both wild-type and knockout samples were processed using the modification
presence prediction model.

To evaluate the m6A prediction performance, the difference in ORCA’s predicted modScore
between paired samples was used to rank candidate m6A sites. The overlap between top
differential modified m6A sites and reference m6A dataset were further calculated. For tools that
directly provide differential predictions, such as xPore and CHEUI-diff, the reported difference in
modification rate was used as the ranking metric. For EpiNano-Error and Nanocompore, we used
the delta_sum_err and P-values, respectively, as provided in their outputs. To reduce tool-specific
biases and ensure fair comparisons, transcriptome coordinates were converted to genomic
coordinates, and only genomic sites reported in both samples were retained for downstream
analysis. When multiple predictions are assigned to a single genomic site, the prediction with the
highest score was selected to represent that position.

m5C detection in HeLa NSUN2 KO/WT samples

To evaluate the m5C detection performance, CHEUI, TandemMod, xPore and ORCA were applied
to NSUN2 knockout and wild-type HeLa cell samples using the same preprocessing and prediction
workflow described above. Reference m5C sites identified from HelLa BS-seq® (GSE122260),
bsRNA-seq*® (GSE140995) and RNA-BisSeq* (GSE93751) were directly downloaded from the
GEO database and merged to construct a unified reference set. For comparison against WT and
KO samples, the same strategy was applied here to ensure consistent genomic site-level
comparisons, and only sites that detected in both samples were retained for evaluation. The changes
in predicted stoichiometry between WT and KO samples at m5C sites were calculated for
comparison.

¥ detection in mixed rRNA sequencing samples

For W detection evaluation, we evaluated ORCA, Tombo and NanoPSU using rRNA sequencing
data. Reference W sites supported by SILNAS-based mass spectrometry*® were used as the ground
truth. Basecalled reads were aligned to ribosomal RNAs from four species following the procedure
described in NanoPSU?’. For downstream comparison, only reads aligned to human 18S
(NR_003286.4) and 28S (NR_003287.4) rRNA sequences were retained. For Tombo, ¥ sites were
identified from resquiggled fast5 files using the ‘tombo detect modifications’ command in



de_novo detection mode. For NanoPSU, the recommend pipeline was applied, where alignment,
remove_intron, extract features and prediction commands were subsequently performed for ¥ site
prediction. For TandemMod, raw signal features were extracted from Tombo-resquiggled fast
files using extract_signal_from_fast5.py and extract_feature_from_signal.py, and modification
predictions were performed using ‘TandemMod.py --run_mode predict’ with the W detection
model.

Benchmarking of zero-shot modification detection

To evaluate ORCA’s zero-shot detection capability, training datasets were constructed by
iteratively selecting different combinations of 2 to 5 RNA modification types from the full set of
six RNA modifications (m6A, m5C, ¥, m1A, hm5C, 5fC). For each combination, the selected
modifications were used to train ORCA modification presence prediction model as previously
described. The trained models were then used to perform zero-shot prediction on the modification
types excluded from training. Prediction accuracy and recall were calculated for each target
modification type for evaluation. In addition, the Pearson correlation between predicted
stoichiometry and simulated ground truth were calculated to evaluate the generalizability of
modification identification and quantification.

For zero-shot m6A prediction, an m6A-absent model was trained by excluding m6A from the
training dataset. This model was then applied to direct RNA-seq data obtained from mouse brain
tissue, and m6A sites detected by mouse brain m6A-SAC-Seq were used as reference dataset.
ORCA’s modScores were computed for all adenosine (A) sites located at the center of DRACH
motifs across the transcriptome. The distribution of modScores between m6A-SAC-Seq-supported
m6A sites and random selected background adenosines within DRACH motifs was compared
using a two-sided Wilcoxon rank-sum test.

For Nm prediction, ORCA modScores were computed for sites supported by 2’-OMe-seq
experiments* downloaded from RMBase v3.034. All other transcriptome sites with read coverage
greater than 10 were used as background controls. The distributions of modScores between
reference Nm sites and background transcriptomic sites were compared using a two-sided
Wilcoxon rank-sum test.

For zero-shot prediction of inosine (A-to-1) RNA editing sites, a Schizosaccharomyces pombe
direct RNA-seq dataset was downloaded from PRIJEB46364. The ASM294v2 S. pombe genome
and annotation were downloaded, and the recommended strategy described in DeepEdit* was
followed to establish a high-confidence set of inosines (A-to-1) RNA editing sites. Illumina RNA-
seq reads from two hADAR2" samples and two control samples were downloaded and individually
aligned using HISAT2® and processed with bcftools®® mpileup for single-nucleotide variant
calling. Candidate sites were defined as A-to-G substitutions supported by a minimum read
coverage of 50 and a variant allele frequency exceeding 10%. Sites that consistently appeared in



both hADAR2" samples and were absent from any of the control sample were retained as the final
ground truth set for evaluation.

For the evaluation of rRNA modification predictions, high-confidence modification sites for
human 18S/28S and yeast 18S/25S rRNAs were download from a published SILNAS mass-
spectrometry based study*®. The mixed-species rRNA direct RNA-seq library was then analyzed,
and ORCA-predicted modScores were benchmarked against the reference modification sites to
calculate the true-positive rate and false-discovery rate.

For the evaluation of non-natural modifications, publicly available 4sU-labelled K562 direct
RNA-seq data” and a matched DMSO control sample were downloaded and analyzed using
ORCA. The change in modScore between the 4sU-labelled and control samples was compared
between U-containing and non-U-containing 5-mers was calculated to measure the enrichment of
modification signal at 4sU-incorporated sites. In addition, a transcript-level 4sU load was defined
as the sum of ORCA-estimated modified counts across U-centered sites per transcript, and was
compared with transcript abundance in matched short-read 4sU pulldown RNA-seq data using
Spearman correlation to evaluate concordance between ORCA-derived 4sU signals and orthogonal
measurements of 4sU incorporation.

Benchmarking of simultaneous prediction of multiple RNA modification types

For both mESCs and HelLa datasets, RNA modification sites were independently predicted from
two WT replicates. Only sites commonly identified in both replicates were retained, and mean
modScore across replicates was calculated and used for site ranking. To establish a reference
modification set, predicted modification sites were compared against public databases, including
DirectRMDB* and RMBase v3.0%, as well as orthogonal long-read based prediction tools:
m6Anet (m6A), EpiNano-SVM (m6A), CHEUI-solo (m6A & m5C), and NanoPSU (¥). To
exclude SNV interference, predicted modification sites with unnormal high mutation rate of
insertion, deletion or mismatch exceeding 0.5 were excluded from the prediction results. Then, the
top 10,000 ranked sites were retained for downstream analysis.

Benchmarking of modification type annotation

To evaluate the performance of modification type annotation, the K562 DRS dataset
(K562_replicate6_runl) from the SGNex project was first employed for modification site
prediction. A total of 48,377 high-confidence modification sites were annotated using NGS-
supported sites from RMBase and DirectRMDB. The modification annotation model was trained
as described above using a five-fold cross-validation. The annotation precision was measured by
dividing the numbers of each correct modification annotation by the number of assigning to it and
other types. The recall rate was measured by dividing the number of correct modification
annotation by the total number of modification sites in the validation site. The final trained model



was applied to unannotated candidate sites for modification type inference, and prediction results
were subsequently filtered based on the correspondence between the predicted modification type
and the reference nucleotide. Specifically, an additional filtering step was applied for m6A
prediction to retain only sites located within the consensus DRACH motif.

To evaluate the false discovery rate (FDR), each modification type was iteratively excluded
from the training dataset. The trained model was then used to assess the fraction of excluded
modification type incorrectly predicted as one of the included types. The number of such
misclassified sites was used to quantify the DFR for each modification type.

For modification annotation validation, de novo motif analysis of ORCA-annotated m5C sites
was performed using XSTREME®C. For m7G validation, the QKI-CLIP peaks were downloaded
from GSE193039, and intersected with the annotated m7G sites. For m1A validation, peaks
identified by m1A-Seq (GSE70485) were downloaded, and each peak was expanded by 4150
nt around the center before intersecting with predicted m1A sites. For ¥ validation, single-
nucleotide resolution W sites from BID-seq (GSE179798) were downloaded and compared against
predicted ¥, non-¥ sites, and unmodified controls. For m6A validation, m6A sites detected by
GLORI were downloaded from GSE210563 and compared against public databases and ORCA-
annotated m6A sites. To account for potential influence in neighboring nucleotides, coordinates
from BID-seq and GLORI were converted to 5-mer regions prior to comparison.

Exclusive modification sites identification and RBP enrichment analysis

To quantify transcript-level variation in exclusively modified sites, each pair of unique genomic
sites was treated as an individual unit of analysis. To focus on isoform-specific modifications, only
modification pairs that were supported by reads spanning more than one transcript isoform were
retained. For each modification pair, an n x 3 contingency table was constructed, where n
represents the number of transcript isoforms, and the three columns correspond to the number of
reads assigned to each distribution including di (simultaneous modification at both sites), d»
(modification at the upstream site only), and ds (modification at the downstream site only). A chi-
square test was then applied to assess variation in modification patterns across different transcript
isoforms. Resulting p-values were used to rank the site pairs by isoform-specific modification
heterogeneity.

To explore potential regulatory mechanisms underlying these isoform-specific modification
patterns, the binding of RNA-binding proteins (RBPs) near these modification sites was analyzed.
Genomic binding profiles from eCLIP-seq experiments for 139 RBPs in K562 cells were obtained
from the ENCODE project in bedGraph format. All isoform-specific modification pairs were
ranked by statistical significance, and enrichment of RBP binding around the top-ranked site pairs
was assessed using a hypergeometric test. RBPs with P-values < 0.01 were considered
significantly enriched. To further investigate the connection between isoform-specific
modifications and splicing regulation, we performed an in-depth analysis using a curated list of 21



splicing factors from the SpliceAidF® database and 7 known RNA modification regulators,
including writers (RBM15), erasers (FTO) and readers (HNRNPAL, IGF2BP1, IFG2BP2, FMR1).

For single-read-level validation, raw reads from m5C-TAC-Seq (SRP459299) and m6A-SAC-
Seq (SRP295164) raw reads were downloaded and aligned to the hg38 reference genome with
STAR™ (v2.7.10b). Modification coordinates reported by m6A-SAC-Seq (GSE162356) and the
m5C-TAC-Seq (provided in their supplementary data) were used as reference loci to quantify and
visualize single-molecule co-occurrence between adjacent modification sites. The same m6A and
m5C loci were independently visualized using ORCA predictions derived from IM95 and HCT116
direct RNA-seq samples, respectively.

Benchmarking on RNA004 chemistry data

For RNA004 chemistry, a prediction model was trained on curlcake IVT libraries®® containing
seven synthetic RNA modification samples and an unmodified control. Training samples with
defined modification fractions and read depths were generated using the same mixing strategy as
for the RNAOQO2 training sets, and the trained model was evaluated on held-out RNA0O4 test
samples by ROC and precision-recall analysis for each modification type. For comparison with
the  vendor-provided  state-of-art  caller, Dorado RNA  modification  models
(rna004_130bps_hac@v5.2.0 for m5C, ¥ and inosine/m6A) were applied to the same curlcake
reads. Read-level modification calls from Dorado were aligned to the reference using the Dorado
aligner, and per-site modification statistics were obtained with modkit pileup. To place Dorado in
the same simulated evaluation framework, synthetic sites spanning a range of sequencing depths
and modification fractions were generated by random sampling, and the per-site modification
fractions reported by Dorado were used as continuous prediction scores. Sites with a true simulated
modification fraction of at least 0.1 were treated as positives, and ROC and precision—recall curves
were computed using the Dorado scores.

To examine zero-shot detection on RNAOQO04, leave-one-modification-out models were
constructed by excluding each of the seven synthetic modification types in turn from the RNA004
curlcake training set and evaluating presence-prediction performance on the held-out type. De
novo M6A detection across chemistries was further assessed on RNA002- and RNAO004-based
mouse brain direct RNA-seq libraries using models trained without m6A. For each library, ORCA
modScores were calculated at adenosines located in DRACH motifs, and score distributions were
compared between m6A-SAC-seq-supported sites and background DRACH positions. Overlaps
of called m6A sites between the RNA002 and RNAQ004 datasets were summarized at the site level.

Benchmarking on ELIGOS and IVET training data

To assess the impact of training-set composition and sequencing chemistry on the presence-
prediction model, additional models were trained on alternative IVT resources. One model was



trained on IVET library®! from the TandemMod study using the same simulation pipeline and
neural network architecture as the ELIGOS-derived RNAQOO2 training set. Performance of the
ELIGOS-trained and IVET-trained models was compared by computing ROC and precision-recall
curves, in order to evaluate cross-dataset generalization and the influence of sequence diversity in
the training data.

Benchmarking on sequencing depth dependence of ORCA prediction model

The effect of read depth on presence-prediction performance was assessed by stratifying
candidate sites into coverage bins and computing evaluation metrics within each bin. In the
ELIGOS IVT datasets, sites with at least 10 supporting reads were grouped into four depth
ranges. For each modification type and each depth bin, AUROC and AUPRC were calculated
using the simulated modification labels as reference. A depth-stratified evaluation was also
carried out for endogenous m6A detection in the mESC Mettl3 WT/KO datasets. Sites were
grouped into the same four coverage bins, and precision-recall and ROC curves were computed
separately for each bin.

Benchmarking on assay-specific and cell line-specific biases

Assay-specific and cell-line-specific biases were evaluated on K562 cell line by partitioning
database-supported sites for m6A, m5C, m1A and Nm according to the profiling technology or
cell line. For each modification type in turn, annotation models with the same architecture and
training procedure were trained in a multi-class setting in which training examples for the focal
modification were restricted to sites from a single technology or cell line, whereas training
examples for all other modification types and the background class always included all available
database-supported sites. For each training configuration, recall and 1-FDR for the focal
modification were quantified on sites detected by held-out technologies or cell lines.

Statistics and reproducibility

No statistical method was used to predetermine the sample size. The in vivo mouse experiment
was performed once as a small proof-of-principle, using two adult C57BL/6 mice, and is not used
for formal statistical comparisons or sex-specific analyses. This sample size was chosen to obtain
one high-depth RNA002 and one high-depth RNAQ004 direct RNA-sequencing library in order to
demonstrate technical feasibility rather than to estimate variability between animals. For all
computational analyses, sample sizes were determined by the size of the available public datasets,
and we used all reads or samples that passed predefined quality control criteria without additional
subsampling. No data were excluded from the analyses.

Where statistical tests were applied, the specific test, the exact P values and the definition of
n are provided in the figure legends or Source Data. P values < 0.05 were considered statistically



significant unless otherwise stated. All computational analyses were performed using Python
Jupyter Notebooks with numpy, pandas and scipy for numerical/statistical calculations and
matplotlib/seaborn for plotting. All codes to replicate the analysis are available as part of code
availability.

Data Availability

The m6A-SAC-seq and ONT direct RNA-seq data generated in this study have been deposited in
the Genome Sequence Archive®? in National Genomics Data Center, China National Center for
Bioinformation (Accession number:
PRJCA040561[https://ngdc.cnch.ac.cn/bioproject/browse/PRICA040561]) that are publicly
accessible at https://ngdc.cncb.ac.cn/gsa. Publicly available nanopore direct RNA sequencing
datasets used in this study were obtained from
SRP166020[https://trace.ncbi.nlm.nih.gov/Traces/?view=study&acc=SRP166020],
SRP393373[https://trace.ncbi.nlm.nih.gov/Traces/?view=study&acc=SRP393373],
PRJEB46364[https://www.ebi.ac.uk/ena/browser/view/PRIEB46364],
SRP329477[https://trace.ncbi.nim.nih.gov/Traces/?view=study&acc=SRP329477],
PRJEB82528[https://www.ebi.ac.uk/ena/browser/view/PRIEB82528],
SRP426654[https://trace.ncbi.nim.nih.gov/Traces/?view=study&acc=SRP426654],
SRP171702[https://trace.ncbi.nim.nih.gov/Traces/?view=study&acc=SRP171702] and the
SGNex project®®. RNA modification sites detected by NGS-based sequencing technologies were
collected from the RMBase v3.0%* and DirectRMDB®*. Additionally, individual datasets were used

for detection different modification types including M6A
(GSE210563[https://www.ncbi.nIm.nih.gov/geo/query/acc.cqi?acc=GSE210563],
GSE163491[https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE163491]), m5C

(GSE140995[https://www.nchi.nlm.nih.gov/geo/query/acc.cqi?acc=GSE140995],
GSE93751[https://www.ncbi.nlm.nih.gov/geo/query/acc.cqi?acc=GSE93751],

GSE122260[https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE122260]), LY
(GSE179798[https://www.ncbi.nlm.nih.gov/geo/query/acc.cqi?acc=GSE179798]), ml1lA
(GSE70485[https://www.ncbi.nlm.nih.gov/geo/query/acc.cqi?acc=GSE70485]), m7G

(GSE193039[https://www.ncbi.nIm.nih.gov/geo/query/acc.cgi?acc=GSE193039]), and inosine
(PRJEB46364[https://www.ebi.ac.uk/ena/browser/view/PRJEB46364]). In particular, the m5C
sites were identified as described in CHEUI?®, and inosine editing sites were de novo identified
from RNA-seq data in the DeepEdit* study. Source Data are provided at Zenodo
(https://doi.org/10.5281/zen0do.17960329).

Code Availability

ORCA is implemented in Python and can be freely accessed on GitHub at
https://qithub.com/bioinfo-biols/fORCA and is archived on Zenodo under the DOI




https://zenodo.org/records/17949213%%, The software is packaged with sample datasets and has
been extensively tested on Linux. The detailed software installation guide has been included in
our GitHub repository. Codes for data analysis have been depositied at Zenodo
(https://doi.org/10.5281/zen0do.17785932).
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Fig. 1 | Overview of the ORCA framework for RNA modification characterization and annotation.
a, Workflow of the preprocessing nanopore direct RNA sequencing data and extracting
polymorphic features. Raw RNA reads were basecalled and aligned to the reference genome.
Reads aligned to the same genomic position were aggregated, and both signal- and base-level
features were extracted to capture the variability caused by presence of both modified and
unmodified RNAs. b, Schematic of training set generation and modification presence prediction.
The ELIGOS IVT dataset was sampled to simulate stoichiometries and sequencing depths of
endogenous modification sites. Extracted features were used to train the ORCA modification
presence prediction model, which comprising a dual-layer Bi-LSTM feature encoder, a domain
classifier (C) and a modification predictor (P). The model was adversarially trained to suppress
domain classifier performance while preserving accurate prediction of modification presence and
stoichiometry. c, Schematic of the modification annotation model. Signal- and sequence-level
features of predicted modification sites were combined with k-mer frequency features representing
motif preference of RNA modifications. An autoencoder was first trained to embed all
modification sites into lower dimensions, then the encoder was fine-tuned to predict modification
types based on public reference annotation. The final model was then used for label-transfer
prediction of previously unannotated modification sites.
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Fig. 2 | Evaluation of modification prediction performance of ORCA. a, Precision-recall (PR)
curves for six RNA modifications by cross-validation using the IVT training set. b, Sensitivity and
false discovery rate (FDR) for each modification type at the default modScore threshold of 0.9.
Colors indicate different modification types. ¢, Distribution of modScore in IVT human mRNA
transcriptome. Red dashed line represents the modScore threshold of 0.9. d, Heatmap showing the
modScore of sites detected in both Mert/3 KO and WT mESCs. e, PR curves comparing ORCA
with other m6A-specific and comparative-based tools for detecting m6A sites at motif level. All
sites within DRACH motifs were ranked based on change of modScore between WT and KO
samples. f, Number of top-ranked differential modified sites supported by m6A sequencing
(GLORI or miCLIP2) or DRACH motif for each method. g, Proportion of downregulated m5C
sites among top differentially modified sites after NSUN2 knockout (KO). h, Number of
significantly up- and down-regulated m5C sites detected by each tool. Differentially modified sites
were identified using a chi-squared test comparing WT and KO predictions (p threshold: 0.05,
exact per-site p values are provided in the Source Data file). Red: upregulated; Blue:



downregulated. 1, Venn diagram comparing ¥ sites prediction of on human rRNA among ORCA,
NanoPSU, TandemMod and Tombo. Source data are provided as a Source Data file.
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Fig. 3 | Evaluation of zero-shot detection capability for unseen RNA modification types. a,
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prediction performance. Middle: evaluation of ORCA’s prediction of m6A, 2’-O-methylation (Nm)
and inosine (1) sites detected using orthogonal NGS-based modification sequencing datasets. Right:
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modification types not included in training set. Lines represent the mean accuracy using different
number of training modification types. ¢, modScore of m6A sites detected by m6-SAC-seq and
background DRACH motifs. m6A sites, n = 2,067; background DRACH motifs, n = 2,466,196. p
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Schematic of the human 18S rRNA secondary structure and RNA modification sites detected by
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transcriptomic site. Red dashed lines indicate the default modScore threshold of 0.9. Source data
are provided as a Source Data file.
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Fig. 4 | Simultaneous detection of different RNA modification types in HeLa and mESC
transcriptome. a, Stacked bar plots of the fraction of predicted modification sites supported by
NGS-based methods or other nanopore (ONT)-based prediction tools. Modification sites were
ranked by ORCA’s modScores. b, Pie charts illustrating the composition of modification types and
supporting platforms among the top 10,000 predicted sites in mMESCs and HeLa transcriptome. For
each modification type, colors indicate dual support of both NGS and ONT platforms (dark),
NGS-only support (medium) or ONT-only support (light). c-d, Genome track views of predicted
modification sites in mouse Lars2 (c) and Ets2 (d) transcripts. Differentially modified m6A sites
are highlighted in red, and other modification types are shown in grey above the panels. In the
normalized signal tracks, the central line indicates the median, and the nested boxes represent
progressively more extreme quantile ranges of the distribution (with the innermost box
approximately spanning the interquartile range, 25th - 75th percentile), and n corresponds to the
read depth at each transcript position; exact per-position n values are provided in source data.
Source data are provided as a Source Data file.
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Fig. 5 | Annotation of modification sites with a transfer-learning strategy. a, Schematic overview
of the modification sites annotation pipeline. Predicted sites were first used to train an autoencoder,
annotated modification types from public databases were then incorporated for supervised fine-
tuning. The encoder was fine-tuned to jointly predict modification type and phase shift, enabling
accurate label transfer for previously unannotated modification sites. b, UMAP visualization of
model-predicted logit scores assigning each site to each modification type. Colors indicate
database-annotated modification sites (dark), ORCA-predicted modification sites (light), and
unknown modification sites (grey). c-d, Cross-validation heatmaps showing the recall (c) and
accuracy (d) of the modification type annotation model. e, Bar plot showing the specificity of the
annotation model: 1 minus the false assignment rate for each modification type when that type is
masked during training. f, Gene body distribution of database-annotated (orange) and ORCA-
predicted (blue) modification sites. g, Number of ORCA-predicted modification sites across seven
modification types. Dark bars indicate database-annotated modification sites, and light bars
represent ORCA-predicted sites. h, Two representative sequence motifs enriched among ORCA-
predicted m5C sites. i, Annotation of ORCA-predicted m6A and m5C sites on the CDT1 transcript.
Tracks represent database-annotated m6A sites, ORCA-predicted m6A and m5C sites, and
supporting evidence from UBS-Seq and GLORI. Source data are provided as a Source Data file.
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Fig. 6 | RNA modification landscape and interplay of neighboring RNA modification sites across
human cell lines. a, Summary of reads counts, number of detected modification sites, and Jaccard
similarity of modification sites across nine human cell lines. b, Length distribution of modification
clusters. C, Number of modification clusters stratified by the number of modification sites per
cluster. d, Venn diagram showing the overlap of modification types within all identified clusters.
e, Schematic of the expectation-maximization (EM)-based model used to estimate co-occurrence
of mutually exclusive interactions between neighboring modification sites. Local outlier factor
(LOF) is used to assess the probability of each read being modified at each site, followed by
statistical testing to evaluate the significance of modification interactions. f, Proportion of co-
occurrence events between different modification type pairs. Arrow thickness reflects the relative
frequency of source-target modification interactions. g, Example of two co-occurring m6A sites
in the DNAJB1 transcript detected in IM95 DRS data and validated by HeLa m6A-SAC-seq. h,
Heatmap of enrichment score for splicing regulators and RNA modification-associated proteins
(writers, erasers, readers; WERs) at isoform-specific, exclusively modified clusters. i-j,
Enrichment plots for ELAVLL1 (i) and FMR1 (j) at isoform-specific m6A-m5C modification
clusters. P values were calculated using a two-sided permutation test. k, Genome browser view of
the RBIS gene illustrating the relationship between RNA modifications and alternative splicing.
Colors indicate predicted m6A (green) and m5C (purple) sites within exon 4, and dashed lines
demonstrate the upstream alternative spliced exon. Source data are provided as a Source Data file.



Editor’s Summary

RNA maodifications influence gene regulation, but global mapping was limited. Here, the authors
introduce ORCA, a deep learning framework using nanopore RNA sequencing to detect multiple
modification types, revealing isoform-specific patterns and regulatory interactions.
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