
Nature Biotechnology

nature biotechnology

https://doi.org/10.1038/s41587-025-02835-1Brief Communication

Detecting and quantifying circular RNAs in 
terabyte-scale RNA-seq datasets with CIRI3
 

Xin Zheng1,2,5, Jinyang Zhang    3,5, Lipu Song1,5, Xiang Jennie Li    1,2, 
Fangqing Zhao    2,3,4   & Yuan Gao    1,2 

To address recent challenges in circular RNA (circRNA) analysis, we present 
CIRI3, a tool for circRNA detection and quantification in terabyte-scale 
RNA-sequencing datasets. Using dynamic multithreaded task partitioning 
and a blocking search strategy for junction reads, CIRI3 is an order of 
magnitude faster than existing tools, while providing increased accuracy. 
We identified differentially spliced circRNAs across 2,535 cancer-related 
samples, and constructed a pretraining model and a biomarker network 
provided as the CIRIonco database.

Circular RNAs (circRNAs) are a unique class of noncoding RNA mol-
ecules characterized by their covalent circular structure1. Recent stud-
ies have revealed their important roles in various cellular processes, 
including the regulation of signaling pathways, sequestration of miRNA 
and RNA-binding proteins, initiation of gene transcription, inhibition of 
mRNA translation and promotion of protein degradation1–10. Advances 
in RNA-sequencing (RNA-seq) technologies have enabled the rapid 
accumulation of large RNA-seq datasets, providing unprecedented 
opportunities for circRNA research. For instance, Chinnaiyan et al. gen-
erated sequencing data from over 2,000 human cancer samples, iden-
tifying circRNAs with potential as cancer biomarkers11. These expansive 
datasets also serve as crucial resources for training large-scale models 
to predict circRNAs and their regulation mechanisms. In our previous 
work, we used RNA-seq data from 394 tissue and cell line samples to 
train a deep learning model capable of predicting circRNA differential 
splicing from single-cell and spatial transcriptomics data, as well as 
other low-depth datasets12. Given the diverse roles and complex regula-
tion networks of circRNAs, the continued expansion of RNA-seq data 
holds immense potential for uncovering novel biogenesis and degra-
dation mechanisms, predicting unknown functions and optimizing 
sequence designs for therapeutic applications.

Current circRNA detection methods can be generally classified 
into alignment-based and pseudo-reference-based approaches13,14 
(Supplementary Table 1). Alignment-based approaches identify 
circRNA-specific alignment features distinct from linear RNAs or 
background noise15. For example, we developed CIRI16 and CIRI2 (ref. 
17), a tool series renowned for reliable de novo circRNA detection18 and 

superior sensitivity in recent large-scale benchmarking13. In contrast, 
pseudo-reference-based approaches rely on predefined back-splice 
junction (BSJ) libraries constructed from annotated exon combina-
tions. While effective in reducing false positives, this strategy is limited 
to well-annotated genomes and cannot detect novel circRNAs with 
unannotated splice sites13,14. Despite a decade of development, current 
tools still suffer from poor scalability due to exponentially increas-
ing runtime and memory demands on large RNA-seq datasets, and 
accurate quantification of circRNAs remains challenging due to their 
low abundance relative to mRNAs19 and strong batch effects across 
different RNA-seq cohorts.

To address these challenges, we introduce CIRI3, a tool for 
large-scale circRNA detection and characterization. Building on its 
predecessor, CIRI3 is optimized for rapid circRNA detection from 
multisample alignment results, offering improved quantification 
accuracy, runtime efficiency and memory usage. Key innovations in 
CIRI3 include robust identification of intronic self-ligated circRNAs and 
targeted quantification for user-defined circRNA lists. CIRI3 supports 
alignments from both BWA20 and STAR21, yielding consistent results 
across aligners (Extended Data Fig. 1a–c). CIRI3 outputs both BSJ and 
forward-splice junction (FSJ) reads, enabling comprehensive statistical 
analyses, including differential expression, differential splicing, and 
differential circularization (Methods).

The CIRI3 workflow consists of two primary alignment-scanning 
modules—high-confidence BSJ discovery and FSJ/BSJ read recovery 
(Fig. 1a). To optimize efficiency, CIRI3 adopts a dynamic multithreaded 
task partitioning approach during the two scanning phases, mitigating 
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segmented into small blocks and each high-confidence BSJ is indexed 
into a hash table using the blocks corresponding to its splice sites as 
key values. This enables targeted searches for junction reads within 
the associated blocks and their neighbors, substantially improving 
search efficiency. For reads supporting only one splice site of a BSJ in 
raw alignments, CIRI3 re-evaluates their splice junction positions and 
orientations through pseudo- or re-alignment with genome sequences. 
Building on the multiseed pseudo-alignment and maximum likelihood 
estimation (MLE) adopted in CIRI2, CIRI3 incorporates Smith−Water-
man local sequence alignment as an additional criterion to improve 
classification accuracy. By applying count or ratio thresholds to the 
BSJs identified in the first scan, CIRI3 generates detailed annotations 
and expression profiles of circRNAs across multiple samples (Fig. 1a, 

runtime inefficiencies caused by variability in single-thread perfor-
mance (Methods and Fig. 1a, step 1). In the first scan, CIRI3 identifies 
potential paired chiastic clipping signals in read alignment (Fig. 1a, 
step 2), a highly sensitive proxy for BSJ16,17. To ensure reliability, CIRI3 
refines and filters paired chiastic clipping signals by requiring perfectly 
matched splicing signals flanking the putative BSJs, including canonical 
GT−AG dinucleotides or noncanonical splicing motifs. When a GTF/
GFF annotation is provided, CIRI3 extracts exon and intron boundaries 
to further enhance splicing signal filtration. These steps yield a set of 
high-confidence BSJs.

In the second scan, CIRI3 employs a blocking search approach 
to recover missed BSJ reads and identify FSJ reads associated with 
each high-confidence BSJ (Fig. 1a, step 3). The reference genome is 
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Fig. 1 | Overview of the CIRI3 pipeline. a, Step 1: input files include SAM/BAM 
alignments and a reference (ref.) genome (required), with annotation (including 
exon coordinates) and circRNA list files optional. Step 2: high-confidence (high-
conf.) BSJs are identified by correcting and filtering chiastic clipping signals 
using splicing signals (for example, GT–AG). Step 3: FSJ and candidate BSJ reads 
are obtained using blocking search, multiseed matching with MLE and Smith–
Waterman alignment. Step 4: CIRI3 generates detailed circRNA annotations and 
expression profiles for BSJ and FSJ reads. Step 5: CIRI3 provides three types of 
statistical analysis. b, Sensitivity and precision of five circRNA detection tools on 
the Hs68 cell line, with corresponding F1 scores indicated. c, The bar plot shows 

the absolute (Abs) Pearson correlation values between log2(BSJ read counts) 
of software-predicted circRNAs and the Cq values of experimentally validated 
circRNAs from RT−qPCR experiments in the SW480 cell line. The numbers above 
each bar represent the counts of experimentally validated circRNAs detected 
by each tool. d, Runtime of six tools on datasets with 200, 800, 2,400 and 4,800 
million reads. All tools were run using 10 threads, except for KNIFE, which used 
the default thread setting. The asterisk indicates that the entire circRNA analysis 
process could not be completed within 14 days on a 256 GB memory server. e, The 
memory required (random-access memory (RAM)) by the tools for the same data 
as in d.
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step 4). Finally, CIRI3 facilitates downstream differential expression 
analyses using its integrated statistical algorithms (Fig. 1a, step 5).

To evaluate circRNA detection performance, we compared CIRI3 
with five widely used tools (that is, find_circ8, KNIFE22, CIRCexplorer3 
(ref. 23), DCC24 and CIRI2) using RNA-seq data from Hs68 cell line 
samples treated with or without RNase R25. Detected circRNAs were 
classified as enriched (putative positives), depleted (false positives) or 
unaffected (Methods). Compared with find_circ, KNIFE, CIRCexplorer3 
and DCC, CIRI3 demonstrated a higher putative positive and lower false 
positive rate (Extended Data Fig. 1d–h). While CIRI2 showed substantial 
overlap with CIRI3, 54 out of 109 circRNAs uniquely detected by CIRI3 
were putative positives. Among all these tools, CIRI3 achieved the 
highest sensitivity and precision (F1 score of 0.74) (Fig. 1b). Notably, 
CIRI3 detected the most putative positives among circRNAs unique 
to each tool.

Moreover, CIRI3 can detect intronic self-ligated circRNAs that 
were undetectable by other short-read tools26 (Extended Data Fig. 2). 
Applied to liver RNA-seq samples from five species27, CIRI3 identified 
59 such events, where all 16 detected in opossum were enriched after 
RNase R treatment. The RNase R validated intronic self-ligated circRNAs 
were predominantly ranged from 300 to 800 bp, and 90% originated 
from protein-coding genes. In a prostate cancer cohort (n = 181), CIRI3 
detected 2,286 intronic self-ligated circRNAs derived from introns 
that were significantly shorter than those not involved in circRNA 
formation (Wilcoxon rank-sum test, P < 2.2 × 10⁻¹⁶), suggesting that 
shorter introns are more prone to back-splicing and circRNA biogen-
esis. Together, these results highlight the scalability and efficiency of 
CIRI3 in identifying diverse circRNA subtypes across different species 
and disease contexts.

To benchmark the quantification accuracy of CIRI3 against 
other tools, we analyzed simulated paired-end RNA-seq datasets with 
20−100× coverage, calculating the Pearson correlation coefficient 
(PCC) and root mean squared error (r.m.s.e.) between the BSJ read 
counts identified by each tool and the simulated BSJ read counts17 
(Extended Data Fig. 3). CIRI3 consistently achieved PCC values above 
0.983, with a mean of 0.990, outperforming all others across cover-
age levels. This improvement over CIRI2 (mean PCC of 0.954) can be 
attributed to the integration of the Smith−Waterman alignment, which 
recovers BSJ reads missed by CIRI2. Furthermore, CIRI3 accurately 
quantified FSJ reads and junction ratios, achieving mean PCC values 
of 0.977 and 0.980, respectively. In terms of r.m.s.e., CIRI3 consistently 
exhibited the lowest errors across all coverage levels, further confirm-
ing its superior quantification accuracy.

Next, we further evaluated CIRI3’s performance on real RNA-seq 
data from three cell lines (SW480, NCI-H23 and HLF), with 1,479 cir-
cRNAs quantified using RT−qPCR13. Among the six tools evaluated, 
CIRI3 and CIRI2 were the most sensitive, detecting 1,172 and 1,174 
validated circRNAs, respectively. CIRI3 also demonstrated the high-
est quantification accuracy for the SW480 and NCI-H23 datasets, 
with PCC values of −0.701 and −0.728, respectively, when compar-
ing log-transformed BSJ read counts to Cq (quantification cycle) val-
ues (Fig. 1c and Extended Data Fig. 4). For the HLF cell line, all tools 
exhibited lower accuracy, but CIRI3, CIRCexplorer3 and DCC showed 
comparable correlations ranging from −0.656 to −0.653, outperform-
ing other methods. We also benchmarked computational efficiency 
(Extended Data Fig. 5a,b and Supplementary Table 1). CIRI3 processed 
the 295-million-read SW480 dataset in just 0.25 h, while other tools 
were 8−149 times slower, requiring 2.0−37.1 h with 25 threads. Memory 
usage was also a notable challenge for most tools. CIRCexplorer3, 
find_circ, DCC, CIRI2 and KNIFE required 27.7, 34.9, 50.8, 139.2 and 
205.1 GB of memory, respectively, substantially exceeding the modest 
12.2 GB required by CIRI3.

In large-scale data analysis, a common strategy to reduce com-
putational resource requirements is to process datasets individually 
before combining results during downstream integration. To assess 

the impact of this separate-detection mode on circRNA analysis, we 
divided the SW480 dataset into three subsets and compared the 
results obtained from processing the entire dataset ( joint-detection 
mode) versus combining results from the subsets. We found that 
all tools showed compromised performance in circRNA detection 
and quantification when using the separate-detection mode. Tak-
ing find_circ and DCC as examples (Extended Data Fig. 5c–f), the 
separate-detection mode reduced memory usage by 49.3% and 22.6%, 
respectively, but detected 22,719 and 8,312 fewer circRNAs, missing 53 
and 11 out of 294 and 292 RT−qPCR validated circRNAs, respectively. 
In addition, quantification accuracy declined, with the absolute PCC 
dropping from 0.647 and 0.655 to 0.528 and 0.592, respectively. When 
focusing on low-abundance circRNAs, the correlation between read 
counts from the separate-detection mode and the joint-detection 
mode was only moderate, with PCC values of 0.682 and 0.789 for 
find_circ and DCC, respectively. Similarly, reprocessing the Hs68 cell 
line samples using this strategy resulted in a substantial reduction 
in enriched circRNAs detected by find_circ. To further evaluate the 
impact on cohort-level circRNA analysis, we analyzed data from 181 
prostate cancer samples using CIRI3 for a comparison between the 
joint-detection mode and the separate-detection mode. The results 
showed that the separate-detection mode identified 24,885 fewer 
circRNAs, corresponding to a 16.2% decrease (Extended Data Fig. 5g). 
Furthermore, the separate-detection mode resulted in lower aver-
age BSJ read counts (47.5 versus 38.6) and fewer identified samples 
(14.7 versus 11.3) per circRNA. In particular, the joint-detection mode 
identified 38,578 highly prevalent circRNAs expressed in at least 15 
samples, which is 38.7% more than the separate-detection mode. 
These findings underscore the limitations of the separate-detection 
mode and highlight the importance of computational efficiency, 
which enables simultaneous processing of large or multiple datasets 
for comprehensive circRNA analysis.

To further evaluate the computational efficiency, we tested all 
tools on RNA-seq datasets with 200 million, 800 million, 2,400 million 
and 4,800 million reads. CIRI3 was the only tool capable of processing 
the terabyte-sized 4,800 million-read datasets in 24 h (Fig. 1d). While all 
tools could handle 200 million-read dataset, KNIFE failed to process the 
800 million-read dataset, and DCC was the only tool besides CIRI2 and 
CIRI3 that could process the 2,400 million-read dataset within 2 weeks 
using less than 256 GB of memory (with ten threads). Compared with 
CIRI2, CIRI3 demonstrated much faster processing speeds and lower 
memory usage. Notably, while memory usage increased with dataset 
size for all tools, CIRI3 showed the smallest increase, ranging from 12 GB 
to 27.5 GB (Fig. 1e). As an ultimate stress test, we attempted to process 
a collection of 296 deeply sequenced samples from RNAAtlas28, total-
ing 39.2 trillion reads. CIRI3 was the only tool capable of completing 
this task, processing 21 TB of SAM files in 105.31 h with a peak memory 
usage of 45.85 GB.

To systematically evaluate the robustness of circRNA detection 
tools, we performed subsampling analyses using RNA-seq data from 
two cell lines (Methods and Extended Data Fig. 6a–f). In Hs68, the pro-
portion of enriched circRNAs detected by each tool remained stable, 
while the absolute number of enriched circRNAs increased markedly 
with sequencing depth. Notably, CIRI3 consistently identified the 
highest number of enriched circRNAs across all subsampling levels. 
Further validation was conducted using RNA-seq data from the SW480 
cell line, which includes 416 RT−PCR-validated circRNAs. The results 
demonstrated a steady improvement in detection performance for all 
tools as sequencing depth increased. Among them, CIRI3 exhibited 
the best performance at all subsampling levels, identifying the largest 
number of validated circRNAs. Taken together, these findings indicate 
that although all tools demonstrate good robustness, CIRI3 shows a 
clear advantage in detection sensitivity.

Inspired by the Percent Spliced In metric widely used in splicing 
analysis, the BSJ ratio was designed to quantify the relative abundance 
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Fig. 2 | Cohort analysis of human cancer tissue data by CIRI3. a, An overview 
of the CIRIonco database dataset: 2,535 total RNA samples from the GEO 
database were analyzed, encompassing 22 tissue types and 30 cancer types. 
circRNAs were identified using the BWA and CIRI3 pipeline to construct a 
tumor-specific circRNAs database. b, A stacked bar plot showing the number 
of circRNAs detected across different cancer types, with colors indicating 
different circRNA types. The filled squares represent sample number for each 
disease. CRC, colorectal cancer; TNBC, triple-negative breast cancer; GBM, 
glioblastoma multiforme; HGSC, high-grade serous carcinoma; ALL, acute 
lymphoblastic leukemia; AML, acute myeloid leukemia; PRCA, prostate cancer; 
ASCC, anal squamous cell carcinoma; UCEC, uterine corpus endometrial 
carcinoma; HNSCC, head and neck squamous cell carcinoma; L-BRCA, luminal 
breast cancer; GC, gastric cancer; ESCC, esophageal squamous cell carcinoma; 
CC, cervical cancer; RCC, renal cell carcinoma; THCA, thyroid carcinoma; 
NSCLC, non-small cell lung cancer; SARC, sarcoma; LGG, low-grade glioma; 
HB, hepatoblastoma; CSCC, cutaneous squamous cell carcinoma; SKCM, skin 

cutaneous melanoma; PDAC, pancreatic ductal adenocarcinoma; BLCA, bladder 
urothelial carcinoma; THC, thymic carcinoid; VS, vestibular schwannoma; 
ACC, adrenocortical carcinoma; APA, aldosterone-producing adenoma; CPA, 
cortisol-producing adenoma; THYM, thymoma. c, A schematic of the pretrained 
model, which leverages differentially spliced circRNAs to classify cancer versus 
normal samples and the transfer learning model applied to colon tissue. d, Left: 
validation and test AUROC of the pretrained model on non-colon samples. Right: 
AUROC on colon samples for generalization, small-scale training and transfer 
learning. ACC, accuracy. e, A schematic of the hierarchical tree based on system, 
tissue and disease levels, containing candidate markers for classification. f, Left: 
the network plot illustrates overlaps in circRNAs markers across hierarchical 
levels. The node size and pie chart represent marker count and prediction 
precision. The circle on the edge shows the overlap marker number with different 
background colors (gray, disease level; brown, tissue level; blue, system level). 
Right: the bar plot shows the predict precision at the tissue level.
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and differential splicing of circRNAs, offering insights into their biogen-
esis regulation16,17,24,29. However, batch effects in RNA-seq data have been 
reported to impact expression quantification based on read counts30. 
To evaluate this for BSJ ratios calculated by CIRI3, we analyzed RNA-seq 
data from 62 samples across four tissues (Supplementary Table 2)27,31–36, 
and performed principal component analysis on both BSJ read counts 
and junction ratios (Extended Data Fig. 7a). While BSJ read counts failed 
to distinguish samples by tissue type, circRNA junction ratios clearly 
clustered samples according to their tissue of origin, with minimal 
batch effects. For example, liver tissue samples showed unique circRNA 
abundance profiles based on BSJ ratios but showed similar expression 
patterns to spleen and testis samples when using BSJ read counts.

We next investigated whether BSJ ratios could serve as biomarkers 
in clinical research. Using RNA-seq data from four studies, we analyzed 
44 pairs of tumor and adjacent normal tissue samples from patients 
with hepatocellular carcinoma (HCC)31,37,38. Applying the statistical tests 
in CIRI3, we identified 102 differentially expressed circRNAs based on 
read counts and 563 differentially spliced circRNAs based on junction 
ratios. Only 18 circRNAs overlapped between the two analyses, and the 
host genes of these two circRNA groups showed significant enrichment 
in distinct biologically relevant pathways, suggesting that BSJ ratios 
capture a different set of circRNAs with potential clinical relevance 
(Extended Data Fig. 6g,h). While differentially spliced circRNAs exhib-
ited clear BSJ ratio patterns distinguishing tumor and normal sam-
ples (Extended Data Fig. 7b,c), no such patterns were observed in the 
counts per million (CPM) values of differentially expressed circRNAs. 
Notably, several experimentally validated HCC-associated circRNAs, 
including hsa-MET-0001 (ref. 39), hsa-SMARCA5_0005 (ref. 40) and 
hsa-ZKSCAN1_0001 (ref. 41) (circAtlas ID), showed significant changes 
in junction ratios (Extended Data Fig. 7d).

To compare the utility of junction ratios and read counts to identify 
biomarkers, we trained support vector machine models using BSJ ratios 
and CPM values of 30 representative circRNAs from three studies to 
classify normal and tumor samples across all four studies. BSJ ratio 
models consistently outperformed CPM-based models, achieving 
higher accuracy in the test datasets (mean value 0.924 versus 0.661) 
(Extended Data Fig. 7e,f), The smaller performance gap between train-
ing and test data for BSJ ratio models further underscores their low 
batch effect and generalization ability in biomarker studies.

To systematically investigate the expression pattern and diagnos-
tic potential of circRNAs in cancer, we collected 2,535 total RNA-seq 
data from human cancerous and normal tissue samples, covering 
30 cancer types (Methods) (Fig. 2a). We identified 470,641 circRNAs 
across all samples, with an average of 8,245 detected in each sample. 
Colorectal cancer (CRC), triple-negative breast cancer (TNBC) and glio-
blastoma multiforme (GBM) samples exhibited the highest numbers, 
indicating abundant circRNA expression in these cancer types (Fig. 2b). 
On the basis of this dataset, we constructed CIRIonco (CIRI Oncology, 
https://ngdc.cncb.ac.cn/cirionco), a comprehensive circRNA database. 
A comparison with existing circRNA databases11,42,43 revealed an overlap 
of 294,692 circRNAs (62.6%) (Extended Data Fig. 8a). A higher propor-
tion of BSJs recorded exclusively in CIRIonco were located in intronic 
regions, suggesting the high sensitivity of CIRI3 in identifying these pre-
viously underrepresented circRNAs due to its annotation-independent 
design (Extended Data Fig. 8b).

Next, we used differentially spliced circRNAs between cancer and 
normal samples as input features to train a five-layer fully connected 
deep neural network (pretrained model) for sample classification 
(Fig. 2c). This pretrained model performed well on both the validation 
and test datasets, achieving overall accuracies and areas under the 
receiver operating characteristic curve (AUROCs) over 88% and 0.91, 
respectively (Fig. 2d). A generalization test on colon tissue samples 
not included in the training set achieved an accuracy of 88% and an 
AUROC of 0.94, indicating strong performance on unseen tissue types. 
We further assessed the model’s transferability using 172 colon tissue 

samples from small cohorts in multiple studies, with one study used as 
the test set and the others used for training in each evaluation. While 
the newly trained model yielded a test accuracy of only 77.78%, transfer 
learning by freezing the first two layers of the pretrained model and 
fine-tuning the remaining layers achieved an accuracy of 88.89% and 
an area under the curve of 0.98, demonstrating the pretrained model’s 
superior performance in small-sample data.

Building upon this framework, we further used circRNAs as bio-
markers to stratify cancer samples at the system, tissue and disease lev-
els (Fig. 2e and Extended Data Fig. 8c). We constructed a system, tissue 
and disease stratification tree, and used differential spliced circRNAs 
as candidate markers at each hierarchical level. These markers were 
then used to train LightGBM classifiers to predict the system, tissue or 
disease origin of each sample. Our results revealed substantial overlap 
and connection among marker circRNAs across different systems, tis-
sues and diseases, and the consequent biomarker network highlighted 
the complexity and diversity of circRNA regulation (Fig. 2f). LightGBM 
classifiers achieved high classification performance, with mean preci-
sion values of 0.959 at both the system and tissue levels, and 0.974 at 
the disease level, further demonstrating the strong potential of BSJ 
ratio-based circRNAs as robust biomarkers. The CIRIonco database 
provides an extensive and scalable resource for cancer-related circRNA 
research and functional exploration, laying a solid foundation for their 
application in cancer subtyping and precision diagnostics.

Over the past decade, our understanding of circRNAs has greatly 
improved, in part due to advancements in circRNA detection meth-
odology that have facilitated the discovery of their biogenesis and 
functions44–48. In this study, we presented CIRI3, which addresses 
several critical challenges in circRNA detection. The scalable design 
of CIRI3 makes it highly efficient at processing cohort-scale data, and 
also capable of discovering underexplored circRNAs lacking canoni-
cal GT−AG splice sites, such as intronic self-ligated circRNAs. CIRI3 
also facilitates diverse downstream analysis by providing accurate 
identification and quantification of circRNAs. For example, while 
CIRI3 was not developed to directly detect the internal structure or 
full-length isoform of circRNAs, its precise BSJ position output can 
enhance the detection of these features by leveraging either over-
lapped paired-end data (for example, CIRI-full33) or long-read (for 
example, CIRI-long26) data.

It should be noted that the performance of circRNA detection 
methods is affected by library preparation strategies. RNase R treat-
ment is a circRNA-specific enrichment strategy, which largely improves 
the sensitivity of detection. However, samples treated by RNase R only 
constitute a relatively small proportion of existing RNA-seq data and 
the efficiency of enrichment varies across samples and protocols, mak-
ing RNase R treatment unsuitable for quantitative analysis14. Neverthe-
less, CIRI3 enhances the accuracy of BSJ ratio measurement, a valuable 
metric for filtering candidate circRNAs based on relative changes 
between RNase R-treated and untreated total RNA-seq data17,24. In con-
trast, total RNA-seq data preserves the features of both circRNAs and 
linear RNAs, representing the most commonly used data for circRNA 
analysis. The BSJ ratio calculated from total RNA-seq data reflects the 
natural proportion of circRNAs compared with other RNAs, and our 
study further demonstrated its high reliability and low variability 
across different datasets, supporting its utility in circRNA biomarker 
identification. However, CIRI3 was not specifically designed for cor-
recting batch effects arising from variations in RNA integrity values33 
or circRNA sequencing protocols14. Therefore, careful experimental 
design and rigorous quality control of circRNA libraries remain essen-
tial to minimize technical batch effects.

Online content
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Methods
CIRI3 input and output
CIRI3 requires alignment files (SAM/BAM) generated by mapping 
FASTQ files to a reference genome (FASTA) using BWA or STAR  
(Supplementary File 1), as well as the same reference genome (FASTA) 
as inputs. Optionally, users can provide a gene annotation file  
(GTF) and a list of circRNAs of interest. This pipeline outputs  
detailed annotations of circRNAs and their expression profiles for 
downstream analysis.

Partition of alignment files
CIRI3 employs dynamic multithreaded task partitioning to optimize 
computational resource allocation. Alignment files are segmented 
into chunks, with the number of chunks adjusted based on input size 
and the preset thread number.

If the input data are less than 200 GB or if dividing the input size  
by the number of threads results in chunks less than 20 GB, the  
number of chunks is set to be the number of threads, with each thread 
processing one chunk. Otherwise, the data are split into 20 GB chunks. 
As scanning proceeds, CIRI3 assigns available threads to unscanned 
chunks, preventing overruns for single thread and improving  
overall efficiency.

High-confidence BSJ discovery
CIRI3 begins by scanning SAM alignments to identify reads exhibiting 
paired chiastic clipping patterns, characterized by chiastic soft/hard 
clipping in their CIGAR strings (for example, xS/HyMzS/H paired with 
(x + y)S/HzM and/or xM(y + z)S/H), which indicate candidate back-splice 
junctions. Putative junctions are further validated by identifying 
canonical (GT−AG) or noncanonical splicing signals and, if provided, 
exon−intron boundaries from the annotation file. Reads passing these 
filters are classified as supporting ‘high-confidence BSJs’. Among these, 
reads with mapping scores above a threshold of 10 for both segments 
are designated as ‘high-confidence BSJ reads’.

FSJ/BSJ reads recovery
In the second scan, CIRI3 utilizes a blocking search approach. The 
reference genome is segmented into non-overlapping blocks, with 
each block’s length defined as: block_size = max_read_length – 2 × ε, 
where max_read_length is the maximum read length and ε is a tolerance 
parameter. This parameter provides a margin of error for the alignment 
positions of reads supporting BSJ sites, thereby improving detection 
sensitivity. High-confidence BSJs are indexed into these intervals based 
on their coordinates, and targeted searches are conducted within the 
associated block and neighboring blocks to recover junction-related 
reads. Reads supporting only one splice site of a high-confidence BSJ 
are re-evaluated using MLE based on multiple seed matching. If neces-
sary, the Smith−Waterman algorithm is applied for precise alignment 
and classification.

circRNA annotation and quantification
CIRI3 quantifies circRNAs using the identified junctions. For BSJs 
sharing start or end sites, the Smith−Waterman algorithm assesses 
sequence similarity to determine if they represent distinct junctions. 
High-confidence BSJ reads from similar junctions are merged toward 
the junction with higher counts. Finally, CIRI3 outputs detailed cir-
cRNA annotations and expression profiles based on supporting BSJ 
and FSJ reads.

Identification of the intronic self-ligated circRNAs
CIRI3 identifies intronic self-ligated circRNAs during the first scan. The 
coordinates of these BSJ reads are corrected using intron boundaries 
from the annotation file. The Smith−Waterman algorithm aligns the 
5 bases from both ends of these reads against the reference genome, 
filtering out reads with >1 bp insertion, deletion or mismatch.

Differential expression analysis
CIRI3 provides three levels of differential expression analysis: (1) dif-
ferential expression and (2) differential splicing of circRNAs and (3) 
differential circularization (relative abundances of circRNAs from 
the same gene).

For differential expression analysis of single circRNA, CIRI3 
employs algorithms from CIRIquant29. For datasets without biologi-
cal replicates, differential expression scores are calculated using a 
generalized fold change approach. For datasets with replicates, CIRI3 
mitigates systematic batch effects before performing differential 
expression analysis. First, gene expression profile is obtained using 
featureCounts (version 2.0.2)49. Next, using Trimmed Mean of M-value 
normalization in edgeR package (version 4.2.2)50, normalization fac-
tors based on gene expression are calculated and applied to normalize 
circRNA expression profile. Differential circRNA expression across 
conditions is then performed using the quasi-likelihood ratio test in 
edgeR. For differential splicing and circularization, CIRI3 employs 
algorithms from rMATS (version 4.1.2)51.

Benchmarking circRNA detection
Using the Hs68 cell line dataset, circRNA enrichment is determined 
by comparing read counts between RNase R-treated and untreated 
datasets of CIRI3 and five commonly used detection tools: CIRI2, 
CIRCexplorer3, DCC, and find_circ and KNIFE. The parameters used 
for each tool are provided in Supplementary File 1. A circRNA is labeled 
as enriched if its BSJ read count in treated samples is at least twice that 
in untreated samples, depleted if its count in treated samples is less 
than in untreated samples and unaffected otherwise, and accordingly, 
enriched circRNAs in RNase R-treated samples were considered puta-
tive positives, while depleted ones were treated as false positives. For 
each run, the start and end times were recorded to monitor the total 
runtime, while RAM usage was assessed by executing the ‘qstat -f Job_ID’ 
command at 10 s intervals.

Separate-detection mode and joint-detection mode
We divided the FASTQ files of the SW480 cell line into three equal sub-
sets. Each subset was processed individually, and results from the three 
subsets were merged by summing the corresponding BSJ read counts 
(separate-detection mode). In the joint-detection mode, CIRI3 treats 
the three subsets as a single unified dataset and performs joint analysis 
in a single run, whereas other tools process the entire SW480 dataset 
directly without supporting joint analysis across subsets.

Enrichment analysis
We performed Kyoto Encyclopedia of Genes and Genomes and Gene 
Ontology enrichment analyses on the host genes of differentially 
expressed circRNAs and differentially spliced circRNAs using the R 
package clusterProfiler.

Robustness evaluation
To evaluate the robustness of circRNA detection tools, RNA-seq data 
from the Hs68 and SW480 cell lines were used for subsampling. Reads 
were randomly subsampled from the untreated dataset to generate 
subsets at 20%, 40%, 60% and 80% of the original sequencing depth. 
The detection tools were applied to each subset and the number 
of enriched, unaffected and depleted circRNAs was determined as 
described above. Each subsampling was repeated three times to cal-
culate the mean and standard deviation.

Construction of a deep learning model for disease 
classification based on circRNA features
We constructed a five-layer fully connected deep neural network to 
classify tumor and normal samples based on circRNA BSJ ratios. All sam-
ples except those from colon tissue were randomly split into training, 
validation and test sets in a 3:1:1 ratio. All colon-derived samples were 
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held out as an independent test set to evaluate the model’s generaliz-
ability to unseen tissue types.

The input features consisted of differentially spliced circRNAs 
that were selected according to the following criteria: (1) expressed 
in at least 10% of normal samples, with an average BSJ ratio in normal 
samples at least twofold higher than in tumor samples, (2) expressed 
in at least 10% of tumor samples but in less than 10% of normal samples 
or (3) expressed in at least 10% of disease samples with an average BSJ 
ratio at least 1.5-fold higher than in the corresponding normal samples. 
A total of 9,631 circRNAs were selected as input features. The model was 
trained on the training set and evaluated on the validation set, the test 
set and the independent colon dataset.

During transfer learning, the parameters of the first two layers 
of the neural network were fixed and only the last three layers were 
fine-tuned to improve the model’s adaptability to new datasets. Spe-
cifically, colon samples from multiple studies were divided so that 
one study served as the test set and the rest served as the training set.

Construction of LightGBM classifiers based on differentially 
spliced circRNAs
We used circRNAs as biomarkers to construct a multilevel classifica-
tion system for stratifying cancer samples according to their system, 
tissue and disease origin. At each hierarchical level (that is, system, 
tissue and disease), we performed differential analysis to identify 
circRNAs with high specificity, which were used as candidate features 
for subsequent classification. Specifically, a one-versus-rest differen-
tial expression strategy was applied at each level: for each system (or 
tissue or disease), we compared all samples belonging to the target 
category against samples from all other categories at the same level 
and identified circRNAs that were significantly differentially spliced 
in each comparison. The union of all differentially spliced circRNAs 
was defined as the final feature set for each category. Using these fea-
tures, we trained three separate LightGBM classification models for 
predicting system, tissue and disease labels, respectively. The input of 
the model consisted of the BSJ ratio values for the selected circRNAs 
and the output was the predicted category label (system, tissue or 
disease). The data were split into training and test sets, with 80% used 
for training and 20% for testing.

circRNA database construction (CIRIonco)
We systematically searched and collected RNA-seq datasets from the GEO 
database using keywords such as ‘total RNA’ and ‘ribo-zero’, focusing on 
studies that employed total RNA library preparation strategies. circRNAs 
were identified from these datasets using the BWA aligner and the CIRI3 
algorithm. Differentially spliced circRNAs were subsequently used to 
train a deep neural network and to construct a hierarchical stratification 
tree. The resulting circRNA resource was organized into CIRIonco (https://
ngdc.cncb.ac.cn/cirionco), an online database system implemented using 
the Django framework. CIRIonco provides a global overview and visuali-
zation of circRNA profiles and supports precise querying of biomarkers 
that distinguish different systems, tissues and diseases. In addition, it 
presents detailed information on the BSJ junction ratios of each circRNA 
across disease and normal samples in different tissues. Metadata and 
accession numbers are provided in Supplementary Table 3. The database 
is freely accessible and no login is required.

Simulated data
Simulated RNA-seq datasets were generated using CIRI simulator17. 
The inputs are human reference genome and gene annotations from 
GENCODE Release 43 (GRCh38.p13). To enable a fair comparison across 
methods, read length was fixed at 100 bp, while insert sizes were drawn 
from a mixture of two normal distributions (N(320, 70) and N(550, 
70)). Sequencing coverage for both linear transcripts and circRNAs 
was varied across 20, 40, 60, 80 and 100 in separate datasets. All other 
parameters were kept at their default settings.

Real data
Publicly available RNA-seq datasets were downloaded from the SRA 
database (SRR444975, SRR445016, GSE162152 and GSE138734). These 
datasets contain RNase R-treated and untreated libraries. Data of Hs68 
cell line (SRR444975 and SRR445016) were used to assess accuracy 
and sensitivity of typical circRNAs identification by each software. 
The accuracy of intronic self-ligated circRNAs identification by CIRI3 
was evaluated using the GSE162152 dataset, which encompassed testis 
samples from five different species, including human, mouse, rat, 
rhesus and opossum. The reference genome for human (GRCh38.
p13) and mouse (GRCm38.p6) were downloaded from GENCODE data-
base. The reference genomes for rat (Rnor_6.0) and rhesus (Mmul_10) 
were downloaded from Ensembl. The reference genome for opossum 
(mMonDom1.pri) was downloaded from the NCBI Genome database. 
Assessment of circRNA quantification used the ribosomal R-treated 
SW480 cell line (SRR17235468), NCI-H23 cell line (SRR17235469) and 
HLF cell line (SRR17235470) RNA-seq data.

In addition, several RNA-seq datasets of human brain, testis, liver 
and spleen tissues were used for batch effect analysis (for accession 
numbers, see Supplementary Table 2) and RNA-seq datasets of tumor 
and adjacent normal liver samples from 44 HCC patients were used for 
DE analysis (GSE128274, GSE169289, GSE216613 and GSE77276). Fur-
ther datasets from multiple cancer types and adjacent normal tissues 
were used for training the deep neural network and constructing the 
stratification tree (for accession numbers, see Supplementary Table 3).

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The data supporting the findings of this study, which were gener-
ated in previous studies, include the RNAAtlas dataset (GSE138734)28, 
Hs68 cell line data (SRR444975, SRR445016)25, SW480 cell line data 
(SRR17235468)13, NCI-H23 cell line data (SRR17235469)13, HLF cell line 
data (SRR17235470)13, Hepatocellular Carcinoma data (GSE128274, 
GSE169289, GSE216613 and GSE77276)31,37,38, and testis data from five 
different species (GSE162152)27. Additionally, several RNA-seq datasets 
from human brain, testis, liver and spleen tissues, along with other 
datasets from multiple cancer types and adjacent normal tissues, are 
also included (for accession numbers, see Supplementary Tables 2 
and 3)27,31–36. All data are available from the National Center for Bio-
technology Information (https://www.ncbi.nlm.nih.gov/) and the 
Genome Sequence Archive in the National Genomics Data Center, 
China National Center for Bioinformation (https://ngdc.cncb.ac.cn/
gsa/). Source data are provided with this paper.

Code availability
CIRI3 is implemented in Java and is freely available via GitHub at https://
github.com/gyjames/CIRI3. Our package includes CIRI3 tool and the 
example dataset, which has been extensively tested on Linux and OS 
X. We also provide a web interface https://ngdc.cncb.ac.cn/bit/ciri3 
for users to run CIRI3 for circRNA analysis.
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Extended Data Fig. 1 | The performance of circRNA detection. a, Venn diagram 
showing the overlap of circRNAs identified using BWA alone or the combined 
STAR + BWA alignment strategy. b, Stacked bar plot showing RNase R resistance 
of circRNAs detected by CIRI3 under different alignment strategies. c, Linear 
regression and Pearson correlation between log2(BSJ read count) (x-axis) and 
mean Cq values (y-axis) in qRT-PCR experiments for circRNAs detected using 
BWA (top) and STAR + BWA (bottom) strategies. d, Stacked bar plot showing 

RNase R resistance of circRNAs detected by CIRI3 and five commonly used tools. 
e, Venn diagram showing overlap of circRNAs detected by CIRI3 and CIRI2.  
f, Stacked bar plot showing RNase R resistance of circRNAs uniquely detected by 
CIRI3 or CIRI2. g, Venn diagram showing overlap of circRNAs detected by CIRI3 
and four other tools. h, Stacked bar plot showing RNase R resistance of circRNAs 
detected by all tools, along with circRNAs uniquely detected by each tool.

http://www.nature.com/naturebiotechnology
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Extended Data Fig. 2 | Performance of CIRI3 for detection of intronic self-
ligated circRNAs. a, Stacked bar plot showing RNase R resistance of intronic 
self-ligated circRNAs detected by CIRI3. b–f, Length distributions of self-ligated 
circRNAs identified from RNase R-treated RNA-seq data in liver tissues of human 
(b), rhesus (c), opossum (d), mouse (e), and rat (f). g, Functional classification 
of host genes for self-ligated circRNAs across the five species. h, Comparison 

of intron lengths between introns forming intronic self-ligated circRNAs 
(n = 2,286) and introns that do not (n = 35,004) within the same genes. Box plots 
show the median (center line), quartiles (box limits), and 1.5× IQR (whiskers). 
Values > 5,000 bp are excluded from the plot for visualization, but all data were 
included in the analysis. Statistical significance was assessed using a two-sided 
Wilcoxon rank-sum test (P < 2.2 × 10−16).

http://www.nature.com/naturebiotechnology
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Extended Data Fig. 3 | Performance of circRNA quantification for CIRI3 and 
other tools on simulated data. Pearson correlation coefficients between BSJ 
read counts, FSJ read counts, or junction ratios of circRNAs identified by CIRI3 
and other tools and the ground truth across simulated datasets with varying 
coverage. a–c, Pearson correlations for BSJ read counts (a), FSJ read counts (b), 

and junction ratios (c). r.m.s.e. between BSJ read counts, FSJ read counts, or 
junction ratios of circRNAs identified by CIRI3 and other tools versus the ground 
truth. d–f, The r.m.s.e. for BSJ read counts (d), FSJ read counts (e), and junction 
ratios (f).

http://www.nature.com/naturebiotechnology
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Extended Data Fig. 4 | Evaluation of circRNA quantification accuracy. Linear regression and Pearson correlation between log2(BSJ read counts) (x-axis) and mean 
Cq values (y-axis) from qRT-PCR experiments in SW480, NCI-H23, and HLF cell lines. n indicates the number of circRNAs identified by each tool and validated in the 
corresponding cell line.

http://www.nature.com/naturebiotechnology
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Extended Data Fig. 5 | Benchmarking and comparative analysis of circRNA 
detection tools. a, Runtime of six tools on the SW480 dataset using 1, 5, 10, 15, 
20, and 25 threads. KNIFE used the default number of threads. The y-axis shows 
the speedup of each tool relative to CIRI2 in circRNA identification. b, Memory 
usage of the same tools for the corresponding thread settings in a. c, Venn 
diagram showing circRNAs identified by DCC (find_circ) in separate-detection 
and joint-detection modes. d, Linear regression and Pearson correlation between 

log2(BSJ read counts) (x-axis) and Cq values (y-axis) from qRT-PCR experiments 
on the SW480 dataset using DCC (find_circ) in separate-detection mode. e, 
Scatter plot of BSJ read counts ( ≤ 5) for circRNAs identified by DCC (find_circ) in 
joint-detection mode versus the same circRNAs in separate-detection mode. f, 
Stacked bar plot showing RNase R resistance of circRNAs detected by find_circ 
in separate-detection and joint-detection modes. g, Distribution of circRNAs 
identified by CIRI3 in both separate-detection and joint-detection modes.

http://www.nature.com/naturebiotechnology
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Extended Data Fig. 6 | Subsampling analysis and functional characterization 
of circRNAs. a–e, Stacked bar plots showing RNase R resistance of circRNAs 
detected by each tool in subsampled datasets at different sampling levels: 
20% (a), 40% (b), 60% (c), 80% (d), and 100% (e). f, Number of RT-PCR-validated 
circRNAs detected by each tool in subsampled SW480 datasets of varying sizes. 

Points indicate mean ± SD of three independent replicates per subsampling level. 
g, Venn diagram showing overlap between circRNAs with differential BSJ read 
counts and differential junction ratios. h, KEGG and GO enrichment analyses of 
host genes associated with circRNAs. Left: circRNAs identified by differential BSJ 
read counts; right: circRNAs identified by differential junction ratios.

http://www.nature.com/naturebiotechnology
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Extended Data Fig. 7 | Evaluation of batch effects on BSJ read counts and 
junction ratios of circRNAs. a, Principal component analysis (PCA) based on 
circRNA junction ratios (left) and BSJ read counts (right) across four tissue 
types from multiple projects. CircRNAs expressed in ≥50% of samples were 
retained. Point shapes indicate project origin. b, PCA of differential junction 
ratios (left) and differential BSJ read counts (right) of circRNAs. c, Heatmaps of 
the top 20 upregulated and top 40 downregulated circRNAs based on junction 
ratios (left) and BSJ read counts (right). d, BSJ ratios for hsa-MET_0001, hsa-
SMARCA5_0005, and hsa-ZKSCAN1_0001 in paired normal (n = 44) and tumor 
(n = 44) samples. Box plots show the median (center line), quartiles (box limits), 

and 1.5× IQR (whiskers). Statistical significance was assessed using a two-sided 
test implemented in rMATS, with “***” indicating P < 1 × 10−16. e, Accuracy of SVM 
models trained on differential circRNAs, based on BSJ ratios or read counts, 
across four datasets (GSE128274, GSE169289, GSE216613, and GSE77276). In each 
round, three datasets were used for training and one for testing. Box plots show 
the median (center line), quartiles (Q1 and Q3), and 1.5× IQR (whiskers). Each 
point represents the accuracy in a given training/testing round (n = 4). Statistical 
significance was assessed using a two-sided Wilcoxon rank-sum test, with “*” 
indicating P = 0.042. f, ROC curves of SVM models trained on BSJ ratios or read 
counts, using GSE77276 as the test set.
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Extended Data Fig. 8 | Characterization of circRNAs in the CIRIonco database. 
a, Venn diagram showing overlap of circRNAs between CIRIonco and other 
human cancer circRNA databases. b, Stacked bar plot showing the composition 

of circRNA types in CIRIonco-specific circRNAs and those shared with other 
databases. c, Hierarchical classification tree based on system, tissue, and disease 
levels, highlighting the number of circRNA markers.

http://www.nature.com/naturebiotechnology







	Detecting and quantifying circular RNAs in terabyte-scale RNA-seq datasets with CIRI3

	Online content

	Fig. 1 Overview of the CIRI3 pipeline.
	Fig. 2 Cohort analysis of human cancer tissue data by CIRI3.
	Extended Data Fig. 1 The performance of circRNA detection.
	Extended Data Fig. 2 Performance of CIRI3 for detection of intronic self-ligated circRNAs.
	Extended Data Fig. 3 Performance of circRNA quantification for CIRI3 and other tools on simulated data.
	Extended Data Fig. 4 Evaluation of circRNA quantification accuracy.
	Extended Data Fig. 5 Benchmarking and comparative analysis of circRNA detection tools.
	Extended Data Fig. 6 Subsampling analysis and functional characterization of circRNAs.
	Extended Data Fig. 7 Evaluation of batch effects on BSJ read counts and junction ratios of circRNAs.
	Extended Data Fig. 8 Characterization of circRNAs in the CIRIonco database.




