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Circular RNA discovery with emerging 
sequencing and deep learning technologies
 

Jinyang Zhang    1  & Fangqing Zhao    1,2,3 

Circular RNA (circRNA) represents a type of RNA molecule characterized by 
a closed-loop structure that is distinct from linear RNA counterparts. Recent 
studies have revealed the emerging role of these circular transcripts in gene 
regulation and disease pathogenesis. However, their low expression levels 
and high sequence similarity to linear RNAs present substantial challenges 
for circRNA detection and characterization. Recent advances in long-read 
and single-cell RNA sequencing technologies, coupled with sophisticated 
deep learning-based algorithms, have revolutionized the investigation of 
circRNAs at unprecedented resolution and scale. This Review summarizes 
recent breakthroughs in circRNA discovery, characterization and functional 
analysis algorithms. We also discuss the challenges associated with 
integrating large-scale circRNA sequencing data and explore the potential 
future development of artificial intelligence (AI)-driven algorithms to unlock 
the full potential of circRNA research in biomedical applications.

CircRNAs constitute a distinct class of covalently closed RNAs that 
are widely distributed across various organisms. Recent research 
has revealed their expanding functions, including sequestration of 
micro(mi)RNA1,2 and RNA-binding proteins (RBPs)3, regulation of 
mitochondrial reactive oxygen species4, encoding cryptic peptides5 
and modulation of innate immunity6. Notably, their circular structure 
confers resistance to degradation by endogenous RNA exonucleases, 
imparting exceptional stability compared to linear RNA counterparts. 
This stability advantage has been leveraged to engineer circRNAs for 
various applications, such as vaccines for severe acute respiratory 
syndrome coronavirus 2 (ref. 7), genome-editing platforms8, RNA edit-
ing9 and RNA therapeutics10,11. With increasing interest in circRNAs, a 
comprehensive profiling of their molecular composition and spati-
otemporal regulation is crucial for understanding their roles in disease 
and developing circRNA-based therapeutics.

However, profiling circRNA molecular sequences and cellular 
heterogeneity remains a substantial challenge. CircRNAs are generally 
expressed at low levels in many tissues, with approximately 10,000 
copies per HeLa cell6, representing an extremely small fraction within 
transcriptome sequencing data. This scarcity complicates comprehen-
sive circRNA profiling in cells. Studies performed over the last decade 
have demonstrated the tissue and organism specificity of circRNAs, 

suggesting that bulk RNA sequencing (RNA-seq) approaches may yield 
a biased view of circRNA expression profiles that is affected by varying 
cell proportions and compositions across samples. Therefore, in-depth 
investigation of the cellular landscape of circRNAs is imperative.

The biological functions of circRNAs largely depend on cis-acting 
elements embedded in their sequences. Similar to linear transcripts, 
alternative splicing of circRNAs generates extensive isoform diversity, 
expanding their functional repertoire. Thus, accurate characteriza-
tion of full-length circRNA isoforms has become pivotal in circRNA 
research. Traditional algorithms for circRNA identification rely on 
distinctive features at the back-splicing junction (BSJ) to detect these 
events based on short-read RNA-seq data. However, the high sequence 
similarity between circRNAs and their linear counterparts makes it  
difficult to distinguish circRNAs from their linear counterparts, espe-
cially in overlapping exonic regions, thereby hindering the reconstruc-
tion of full-length circRNA isoforms.

Recent advances in long-read and single-cell RNA-seq (scRNA-seq) 
techniques have substantially enhanced our ability to investigate cir-
cRNA heterogeneity in depth. In particular, various efforts have been 
made to achieve comprehensive profiling of full-length circRNA iso-
forms using long-read sequencing technologies, which overcomes pre-
vious limitations in circRNA reconstruction efficiency and accuracy12–14. 
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and a pseudo-circular reference (for example, candidate circRNAs from 
CIRI2 (ref. 21) and NCLscan41) to reduce false chimeric alignment and 
improve quantification precision. Tools such as CirComPara2 (ref. 44)  
further enhance reliability by integrating results from multiple pre-
diction tools. Systematic benchmarking studies have shown that, 
while most circRNA detection algorithms exhibit reliable accuracy, 
their sensitivity varies widely45. Therefore, integrating high-sensitivity  
tools with pseudo-reference or comparative-based filtration algo-
rithms can offer a more balanced approach for accurate identification 
and quantification.

Model-based quantification methods, such as Sailfish46 and 
Kallisto47, have been widely used for rapid and accurate linear  
RNA quantification. These tools rely on matching short sequence  
fragments (k-mers) to estimate transcript abundance. However, 
efforts to adapt these strategies for circRNA quantification48 have been  
limited by the high sequence similarity between circRNA and their 
linear counterparts. Nonetheless, these models offer valuable insights 
for future developments in model-based circRNA quantification tools.

Estimation of the circular-to-linear ratio
CircRNA biogenesis involves competition between back-splicing and 
canonical forward-splicing, which generates linear RNAs49. Thus, 
the ratio of circular-to-linear transcripts serves as a key measure of 
splice site utilization efficiency in circRNA formation. Various metrics  
have been proposed to assess this ratio (Fig. 1c). Several tools, includ-
ing CIRI2 (ref. 21), CIRIquant42 and CirComPara2 (ref. 44), calculate  
the back-splicing inclusion ratio by dividing the number of back- 
splicing reads by the sum of back-splicing and forward-splicing reads 
at the same splice junction. Similar to the percentage of spliced  
in (PSI) metric used in the analysis of messenger RNA (mRNA) alter native 
splicing50, this measure reflects the relative usage of back-splicing  
versus forward-splicing and represents the efficiency of specific BSJs.

By contrast, tools such as CircTest30, CIRCexplorer3-CLEAR51 and 
CiLiQuant52 calculate the BSJ ratio, which measures the abundance 
of BSJ reads relative to the average linear junction reads within the  
same gene. This approach provides insights into the overall balance 
between circular and linear transcripts. To ensure accuracy, ambigu-
ous reads within BSJ regions are typically excluded, as misclassification 
of internal circRNA junctions as linear junctions can skew BSJ ratio 
calculations. However, calculation of the BSJ ratio may be less precise 
for large circRNAs spanning long genomic distances or for loci generat-
ing multiple overlapping circRNAs. Similarly, Sailfish-cir48 calculates 
the circular read ratio by dividing the expression level of circRNAs by 
the sum of circular and linear RNA expression. However, limitations in 
current model-based quantification strategies constrain the precision 
of this metric. Therefore, accurately estimating the relative expression 
levels of circular and linear transcripts remains an ongoing challenge.

It is important to note that both metrics reflect the steady-state 
levels of circRNAs within a given sample, which are influenced by the 
dynamic regulation of circRNA and mRNA biogenesis and degrada-
tion. Due to the greater stability of circRNAs versus mRNAs, a high 
circular-to-linear ratio may result from circRNA accumulation rather 
than active biogenesis53. To directly estimate the biogenesis and degra-
dation rates, experimental approaches such as metabolic RNA labeling 
have been employed to track nascent circRNA synthesis54. Neverthe-
less, the interpretation of these metrics may vary depending on the 
biological context, underscoring the need for careful consideration 
of their application.

Differential expression analysis
Differential circRNA expression analyses evaluate changes in  
both expression levels and the circular-to-linear ratio (Fig. 1d). The 
number of reads spanning the BSJ site is conceptionally similar to 
gene read counts normalized by transcript length, as in RPKM (reads 
per kilobase of transcript per million reads mapped) or its improved 

At the same time, the development of single-cell whole-transcriptome 
sequencing methods has enabled circRNA profiling at single-cell reso-
lution. Recent studies have integrated large-scale scRNA-seq data to 
elucidate the cellular landscape of circRNAs15. In addition, AI-based 
algorithms have been employed in predicting cell type-specific circRNA 
expression, providing insights into the spatiotemporal regulation of 
circRNAs in disease and development16.

In this Review, we outline recent advances in circRNA identifi-
cation, quantification and differential expression analysis. We also 
examine how new sequencing techniques and AI-driven algorithms 
are advancing the understanding of circRNA molecular and cellu-
lar heterogeneity. Additionally, we discuss the emerging role of and 
challenges associated with integrating large-scale circRNA datasets. 
Finally, we discuss future prospects for optimizing circRNA characteri-
zation approaches and leveraging AI to expedite functional analyses 
of circRNAs.

Quantitative analysis of circRNAs
CircRNAs are formed through the ligation of the 3′ and 5′ ends of circu-
larized exons via back-splicing. This process is catalyzed by the exon 
definition complex on long exons17 and facilitated by flanking intronic 
complementary sequences18 and RBPs19, which bring the splice sites 
into close proximity. Back-splicing results in unique chimeric sequence 
features at BSJs that distinguish circRNAs from linear RNA isoforms 
(Fig. 1a). Standard circRNA analysis workflows begin by identifying 
these BSJ features from RNA-seq data, followed by quantification and 
differential expression analysis similar to gene expression studies. In 
addition, circRNA-specific analyses, such as differential back-splicing 
and alternative back-splicing analysis, can elucidate intricate changes 
in circRNA biogenesis. These analyses offer insights into the dynamics 
of competition between linear and circular splicing as well as switching 
between different BSJs.

CircRNA identification and quantification
The covalently closed structure of circRNAs produces a unique fea-
ture at their BSJs where the splice site order differs from that of linear 
isoforms (Fig. 1a). Most circRNA identification algorithms employ 
alignment-based strategies to detect and quantify this back-splicing 
feature from non-colinear alignment segments, and the abundance 
of circRNAs is then calculated using the number of BSJ-supporting 
reads (Fig. 1b). Most tools, such as acfs20, CIRI2 (ref. 21), find_circ2, PTES-
Finder22 and UROBORUS23 use standard aligners (for example, BWA24, 
Bowtie25, Bowtie 2 (ref. 26) and TopHat27) for de novo circRNA identifi-
cation. Other tools, such as circRNA_finder28, CircSplice29, DCC30 and 
CIRCexplorer2 (ref. 31) rely on chimeric-aware aligners such as STAR32 
and TopHat-Fusion33 to detect BSJs from reported chimeric alignments. 
Specialized aligners, such as segmehl34, MapSplice35 and SPLASH2 
(ref. 36), can directly identify back-splicing patterns. Subsequently, 
many algorithms filter results using canonical GT/AG splice signals. 
While this enhances accuracy and enables strandedness determi nation, 
it may exclude noncanonical circRNAs, including intronic circRNAs  
derived from a lariat (a looped intermediate)37, full-length intron 
circles14, transfer RNA intronic circular RNAs38 and certain plant  
circRNAs39. Notably, the intricate nature of BSJ alignment often  
challenges the distinction between circRNAs and alignment artifacts, 
leading to substantially long processing times and compromised preci-
sion. By contrast, pseudo-reference-based approaches (for example, 
KNIFE40 and NCLscan41) employ prebuilt candidate BSJ sequences  
to streamline alignment and reduce false positives. However, these 
methods require a well-annotated genome and cannot detect  
circRNAs with novel splice sites.

Combining multiple circRNA identification strategies improves 
detection sensitivity and quantification accuracy. For instance, 
pseudo-reference-based quantification approaches (CIRIquant42 and 
NCLcomparator42,43) realign reads against both the reference genome 
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Fig. 1 | Identification, quantification and differential expression analysis 
of circRNAs. a, The BSJ of circRNA provides a unique non-colinear alignment 
feature essential for circRNA identification. b, BSJs are identified from segmented 
alignment against a reference genome or by direct alignment against a pseudo-
reference that mimics BSJ sequences. For circRNA quantification, the pseudo-
reference-based strategy uses the candidate circRNAs from other tools for 
false positive filtering based on BSJ read realignment. In addition, model-based 
strategies can estimate circRNA abundance through iterative k-mer allocation.  
c, The circular-to-linear ratio indicates the proportion of circRNAs generated from 
pre-mRNAs; it can be measured by the number of BSJ reads relative to the sum of 
BSJ and forward-splicing junction (FSJ) reads (back-splicing inclusion ratio) or 

to the sum of all linear splicing junction reads (BSJ ratio). Ambiguous junction 
reads within BSJ regions are often discarded during calculations, as they cannot 
be definitively assigned to circRNAs or mRNAs. This metric can also be derived 
from relative circRNA expression levels estimated using k-mer model-based 
quantification strategies. Shown here is a simplified transcript model to illustrate 
the concept, but more complex overlaps between circRNAs and linear transcripts 
are often observed. d, Changes in circRNA expression between different 
conditions can be measured by three methods: differential circRNA expression 
measured by changes in BSJ reads, differential back-splicing measured by the 
linear/circular ratio and differential alternative back-splicing, which reflects the 
shifts between different circRNAs originating from the same gene locus.
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successor TPM (transcripts per million)55. CircRNA expression levels 
can therefore be estimated by dividing BSJ reads by the total number 
of mapped reads. However, unlike gene expression analysis, in which 
the null hypothesis assumes that most genes remain unchanged across 
conditions, circRNA expression is influenced by factors, such as cir-
cRNA accumulation, degradation or detection biases introduced by 
circRNA-enriched sequencing protocols. This makes normalization a 
critical step in circRNA differential expression analysis.

One precise normalization method involves quantitative PCR  
with reverse transcription (RT–qPCR)56 or spike-in RNAs57 to estimate 
normalization factors linking BSJ reads to RPKM or TPM56. While effec-
tive, this approach depends on the choice of RT–qPCR targets or syn-
thetic spike-in RNA molecules, limiting its scalability for large-scale 
integrative studies. Alternatively, bioinformatic pipelines employ 
various normalization strategies. For example, normalization factors 
can be derived from all circRNA reads, capturing relative changes 
between circRNAs, but they potentially introduce bias by ignoring 
host gene expression. Other approaches apply canonical gene dif-
ferential expression models to estimate normalization factors from 
mRNA expression levels, which are then used to normalize circRNA 
expression42,58. While these methods improve cross-sample compa-
rability, they are less suitable for RNase R-treated samples due to vari-
ations in RNase R efficiency across different samples and protocols. 
Thus, integrating these complementary normalization approaches 
may better capture the complex changes in circRNA expression under 
different experimental conditions.

To quantify changes in the circular-to-linear ratio, CircTest30 uses 
a β-binomial model to measure relative changes between linear and 
circular isoforms. CIRIquant42 uses the exact rate ratio test59 to assess 
significant changes in back-splicing inclusion ratios. For studies lack-
ing biological replicates, β-distribution and generalized fold change60 
methods estimate expression and back-splicing inclusion ratio 
changes, providing a robust approach for preliminary experiments.

CircRNA expression analysis also requires multifaceted explora-
tion. Differential alternative back-splicing analysis examines shifts in 
the usage of distinct BSJs, quantified by calculating the ratio of specific 
BSJ to total BSJs within the same gene. For instance, the fly mbl gene 
has been shown to express context-specific circRNA isoforms, such 
as circMbl(2), which dominates in fly brain cells, while alternative 
isoforms prevail in eye cells61. The switching of different circular tran-
scripts also contributes to the regulation of MBL-C, MBL-O and MBL-P 
protein isoforms61. Together, these metrics offer valuable insights 
into the dynamic regulation of circRNA biogenesis, accumulation 
and degradation.

Reconstruction of internal structure using short- 
and long-read sequencing
Examining full-length circRNA sequences offers valuable insights 
into the biological functions of circRNAs. Recent advancements in 
short-read-based algorithms have enabled effective reconstruction 
of short circRNA isoforms, while long-read sequencing strategies have 
further enabled the direct reconstruction of full-length circRNAs across 
a broader size range.

Identification of alternative splicing from short-read RNA-seq
The study of circRNAs has revealed their intricate and unique alter-
native splicing patterns31,62, highlighting that using annotated linear 
exons to represent circRNA structures can lead to biased and inaccurate 
conclusions63. Consequently, various methods have been developed 
to profile the internal structures of circRNAs using short-read RNA-seq 
data, categorized as either indirect or direct approaches (Fig. 2a).

Direct methods identify circRNA-specific splicing using 
paired-end reads spanning BSJs. Tools such as CIRI-AS62, CircSplice29 
and FUCHS64 detect internal splice sites through the alignment of 
BSJ read pairs, providing strong evidence for cryptic circular exons 

(cirexons)62. However, their resolution is constrained by RNA-seq 
fragment lengths, often leading to missed internal splicing events in 
large circRNAs12,14. Indirect methods compare exon coverage between 
circRNA-enriched samples (often treated with RNase R) and untreated 
samples. For example, CIRCexplorer2 (ref. 31) uses poly(A)-depleted 
and/or RNase R-treated and poly(A)+ RNA-seq to map circRNA and  
linear splicing, respectively. This circumvents fragment length limi-
tation but still faces challenges, as circRNA-enriched samples still 
typically contain >90% linear reads13,14 and RNase R inefficiency against 
structured 3′ ends or G-quadruplexes65 can bias results. Additionally, 
indirect approaches lack direct BSJ read evidence to support internal 
splicing structures and require paired treated and/or untreated data-
sets, which are often unavailable in clinical studies.

Circular isoform reconstruction from short-read RNA-seq
Accurately determining full-length circRNA sequences is critical  
for predicting their biological functions66. Multiple methods now  
aim to assemble circRNA isoforms from short-read RNA-seq, ena-
bling insights into isoform-level changes during various biological  
processes (Fig. 2b).

Similar to paired-end mapping approaches for identification of 
circRNA alternative splicing, CIRI-full67 merges overlapping BSJ read 
pairs from Illumina PE250 and PE300 platforms to reconstruct circR-
NAs at single-molecule resolution, achieving high-fidelity assemblies of 
circRNAs under 500 bp. However, its ability to assemble longer circRNA 
isoforms is limited. circseq_cup39 extends this by assembling all BSJ 
reads from the same circRNA loci using CAP3 (ref. 68); this expands 
the representation of circRNA isoforms but requires high circRNA 
coverage and remains limited by fragment length. CIRI-full also incor-
porates a Monte Carlo-based algorithm to estimate isoform structure 
and abundance using the splice graphs from CIRI-AS62 but faces similar 
limitation of detection range67.

By contrast, strategies that are not confined to BSJ reads offer 
broader reconstruction coverage. CIRIT69 uses de novo transcrip-
tome assembly (for example, IDBA-tran70) to identify circRNAs via 
head-to-tail overlap in assembled transcripts. However, most transcript 
assemblers may not optimize for circRNA assembly performance. 
Similarly, CircAST71 and TERRACE71 constructs splice graphs from 
aligned fragments within each BSJ or gene locus and apply path-finding 
algorithms (for example, extended minimum coverage paths, dynamic 
programming) to infer isoforms covering all BSJ read-supported struc-
tures. While these methods bypass circRNA size limits, they lack direct 
BSJ read support for certain internal structures.

Despite progress, all current short-read-based methods face 
trade-offs of reconstruction length and reliability, underscoring the 
urgent need to improve the accuracy and comprehensiveness of  
circRNA studies.

Full-length circRNA detection using long-read sequencing
With the advent of long-read sequencing technology72, several methods 
have emerged for the direct identification of full-length circRNA struc-
tures (Fig. 2c). These methods primarily use the strand-displacement 
activity73 of reverse transcriptase to perform rolling circle reverse tran-
scription (RCRT), generating concatemers of multiple complementary 
DNA (cDNA) copies of a single circRNA. CIRI-long14 and circFL-seq13 
use template switching and poly(A) tailing to enable second-strand 
synthesis of RCRT cDNAs. CIRI-long optimizes RNase R treatment con-
ditions65 to digest linear transcripts into small fragments, followed by 
size selection to enrich longer RCRT products over linear cDNAs. The 
enriched cDNAs are subsequently amplified and sequenced using the 
Oxford Nanopore Technology platform. By contrast, isoCirc12 uses 
exonuclease treatment to remove strand-displacement overhangs, 
followed by ligation of cDNAs from the circRNA into a full-length cir-
cle, which is amplified using rolling circle amplification. All strategies 
produce long concatemer reads, enabling identification of individual 
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copies of full-length circRNAs. Consensus sequences are calculated 
using trf74 or partial order alignment algorithms75,76 and aligned to the 
reference genome to identify BSJs and full-length isoforms. Apart from 
RCRT-based strategies, circNick-LRS77 combines different fragmenta-
tion conditions to linearize circRNAs, followed by polyadenylation 
and nanopore sequencing. Sequenced molecules exhibit permuted 
circular sequences similar to those in RCRT methods but risk omitting 

internal circRNA structures if linearization occurs at multiple sites in 
one circRNA.

These long-read-based strategies resolve length limitations, ena-
bling accurate full-length isoform reconstruction and novel circRNA 
discovery. However, circRNA length distributions differ between the 
methods that are based on RCRT (~500 nucleotides) or linearization 
(~800 nucleotides), likely due to biases in RCRT and fragmentation 
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Fig. 2 | Characterization of circRNA isoform structures. a, Circular alternative 
splicing events are identified either using read pairs spanning BSJ sites or by 
comparing coverage in circRNA-enriched (red) and mRNA-enriched (gray) 
libraries. The top track indicates coverage of circRNA-specific splicing events 
that correspond to the two circRNA isoforms originating from exon (2, 3) 
and exon (2, 3, 4) of the example mRNA. b, Full-length circRNA isoforms are 
reconstructed by merging reverse overlapping read pairs, assembling all BSJ read 
pairs from the same junction site or predicting from the splice graph of the entire 
gene locus. The BSJ read pair assembly method provides strong evidence for the 
reconstructed isoform, whereas the splice graph-based approach is effective 
for constructing long circRNAs but lacks direct evidence of internal structures. 
c, Long-read sequencing strategies can be used for single-molecule sequencing 
of full-length circRNA isoforms. In linearization-based strategies, circRNAs are 

fragmented and polyadenylated to generate linearized RNA with poly(A) tails, 
which are further sequenced using the standard Oxford Nanotechnologies 
cDNA sequencing protocol. CircRNA sequences are identified using a split 
alignment strategy, similar to short-read based analysis. Alternatively, RCRT-
based strategies employ template switching or polyadenylation to capture RCRT 
products or use exonuclease and single-stranded DNA ligase to generate circular 
cDNAs that replicate the circRNA sequences. These ligated products undergo 
rolling circle amplification with Φ29 polymerase for library construction and 
nanopore sequencing. Sequencing reads from RCRT-based strategies consist 
of concatemers of multiple copies of full-length circRNA sequences. The full-
length circRNA sequences are then identified through consensus calling and 
downstream BSJ detection. RTase, reverse transcriptase.
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efficiency toward circRNAs of different lengths. Notably, recent 
advances using group II intron reverse transcriptase have generated 
RCRT products >10 kb, revealing that RNase R-treated samples may 
exhibit biased circRNA distributions due to nonspecific nicking during 
RNase R digestion78,79. These findings suggest that the true circRNA 
length spectrum requires further experimental validation. Addition-
ally, variations in RCRT efficiency across circRNAs of different lengths 
may also impact quantitative analysis80, necessitating further evalua-
tion of quantification outcomes.

Despite the higher cost associated with nanopore sequencing, 
which has restricted the application of these circRNA sequencing  
strategies in clinical research, ongoing efficiency improvements 
may mitigate these limitations78,81,82. With continued enhancements, 
long-read circRNA sequencing could become the standard approach 
in circRNA studies, offering accurate and comprehensive insights into 
circRNA structures and functions.

Profiling circRNA cellular and spatial 
heterogeneity
CircRNAs exhibit high tissue and cell type specificity56,83–86, mak-
ing bulk analyses prone to bias arising from variations in cell type 
composition87,88. For example, the ciRS-7 (CDR1as), initially proposed 
as an oncogene due to its miR-7 sponge activity and overexpression 
in tumors89, was later found to originate predominantly from stromal 
cells rather than cancer cells in colon cancer88. Similarly, the correla-
tion between circRNA and mRNA expression levels is more reflective  
of varying cellular compositions than the competitive endogenous  
RNA roles traditionally attributed to circRNAs87. These findings 
emphasize the urgent need for single-cell-resolution methods to  
dissect circRNA heterogeneity. However, current single-cell sequenc-
ing platforms such as the widely used 10x Chromium system, which 
primarily capture 3′ or 5′ sequences of linear transcripts90, are inade-
quate for detecting circRNAs (Fig. 3a). As a result, profiling circRNAs at 
single-cell resolution remains a formidable challenge, and systematic 

characterization of cellular expression patterns in this context has yet 
to be achieved.

Characterization of cellular heterogeneity of circRNAs with 
single-cell sequencing
To explore the cellular heterogeneity of circRNAs, researchers employ 
laser capture microdissection (LCM) to dissect regions of interest and 
sequence circRNAs in minibulk samples of target cell types91. While 
LCM improves cell type resolution over bulk-level analyses, it is labor 
intensive and relies on the purity of the isolated cell population.  
Flow cytometry cell sorting offers higher-throughput sequencing of 
circRNAs in specific cell types92. However, both LCM and flow cytometry 
approaches rely on prior knowledge of the cell types under investi-
gation, limiting their utility for discovering novel cell types.

Single-cell sequencing approaches such as SUPeR-seq93 combine 
single-cell sorting with random primer reverse transcription; these 
enable circRNA characterization in mouse and human embryos and 
have revealed stage-specific circRNA dynamics during embryonic 
development93,94. Other random reverse transcription-based scRNA-seq 
strategies, including SMARTer single-cell total RNA-seq95, MATQ-seq96, 
VASA-seq97 and snRandom-seq98, have also been able to capture these 
circular transcripts. At the same time, polyadenylation-based pro-
tocols, such as Smart-seq-total99, can also detect degraded circRNA 
fragments containing BSJ sequences.

While other single-cell full-length scRNA-seq methods primar-
ily rely on poly(A) selection, which inadequately captures circRNAs 
that lack poly(A) tails, a considerable number of circRNAs have  
been detected in these poly(A)-enriched datasets61,100. For example, 
internal poly(A) tracts in circRNAs enable oligo(dT) primer binding, 
which facilitated the detection of its cell type-specific expression of 
different circRNAs from the mbl locus in the fly brain and eye using 
poly(A)-enriched scRNA-seq datasets61. Moreover, circSC15 aggregates 
data from 171 full-length scRNA-seq studies to map circRNAs in human 
and mouse cells, revealing highly cell type-specific expression patterns 
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in brain samples, developing embryos and breast tumors. However, the 
lack of circRNA enrichment and low sequencing depth limit detection 
to a few circRNAs per cell, where many circRNAs are supported by one 
or two BSJ reads, increasing the risk of false positives. These limitations 
highlight the urgent need for high-throughput single-cell circRNA 
sequencing strategies.

Prediction of circRNA cellular heterogeneity with deep 
learning models
Deep learning algorithms have revolutionized circRNA detection, ena-
bling analysis at single-cell or spatial resolutions. CircRNA biogenesis 
is intricately regulated by factors, such as the spliceosome17, RBPs19,49 
and flanking intronic complementary sequences101,102. This regula-
tory complexity implies that circRNA expression may be predictable 
based on these cis-acting sequence features and trans-acting regulator 
expression levels.

On this basis, CIRI-deep introduces a deep neural network to  
predict changes in the back-splicing inclusion ratio between paired 
samples16 (Fig. 3b). Trained on 25 million circRNA splicing events 
from bulk RNA-seq samples, this model is adapted to predict circRNA 
splicing preferences in single-cell and spatial transcriptomic data 
and incorporates an adapted integrated gradient strategy to assess 
the contribution of various cis and trans regulatory features, enhanc-
ing exploration of circRNA regulation across different sequencing 
metho dologies. However, the model’s training on samples from normal  
tissues limits its utility in tumors or other disease contexts. Bulk 
RNA-seq training sets also conflate RBP–circRNA regulatory relation-
ships with cell type composition heterogeneity and technical batch 
effects, which can lead to false positive predictions.

Recent spliceosome perturbation studies103 highlight opportuni-
ties to refine models with RBP knockdown datasets104 or genome-wide 
CRISPR screening data105 to better model the regulatory mechanisms 
underlying circRNA back-splicing. Such approaches would provide 
more robust evidence for predicting circRNA expression across diverse 
biological contexts.

Functional characterization of circRNAs
The regulatory functions of circRNAs can be explored through 
standard differential expression and splicing analyses across various 
experi mental conditions. In large cohorts, correlating circRNA levels  
with gene and/or miRNA expression can reveal potential regulatory 
networks such as circRNA–miRNA–mRNA axes. For large-scale analysis, 
deep learning models integrate experimentally validated circRNA– 
disease associations to predict novel associations.

Canonical expression-based analysis
Standard differential expression and splicing analysis measures circRNA 
changes across different conditions, such as disease states or experi-
mental treatments (Fig. 4a). The regulatory functions of differentially 
expressed circRNAs are then annotated using public databases106,107 or 
predicted de novo based on sequence features, including RBP-binding 
motifs108 and miRNA-responsive elements109. While many studies 
use host gene functions of circRNAs for Gene Ontology and Kyoto  
Encyclopedia of Genes and Genomes enrichment analysis, this 
approach can be misleading, as circRNA expression often diverges 
from that of their host genes.

Recent efforts instead prioritize functional circRNAs using 
network-based algorithms. Such mRNA–circRNA coexpression net-
works are often constructed from large-scale circRNA and mRNA 
expression profiles to reveal functional relationships (Fig. 4b). Strong 
positive correlations between circRNA and mRNA expression suggest 
coexpression or cofunction, whereas negative correlations indicate 
potential negative regulation. To prioritize disease-related circRNAs, 
a random walk algorithm could be employed to quantify the proximity 
of candidate circRNAs to known disease-related genes83. Furthermore, 

the conservation of genomic sequences could further be combined to 
provide an effective strategy for ranking disease-associated circRNAs.

Deep learning architectures for functional circRNA prediction
Recent advances in deep learning models have spurred the devel-
opment of numerous deep learning-based algorithms for predict-
ing disease-related circRNAs110. These models typically leverage the  
circRNA–disease network (Fig. 4c). First, they gather experimentally 
validated circRNA–disease associations from curated circRNA data-
bases111. Relatedness between circRNAs and diseases is then measured 
using different approaches: circRNA–circRNA similarity (via sequence 
matching), disease–disease similarity (via semantic approaches, such 
as shared clinical features and molecular mechanisms) and circRNA–
disease interaction similarity (via entropy, topology, functional charac-
teristics112 and Gaussian interaction profile kernels113). To predict novel 
associations, these algorithms employ deep learning models, such 
as convolution neural networks114, autoencoders115 and graph neural 
networks116,117. Notably, recent models, such as CLCDA118 and CircDA116, 
incorporate RBP-binding sites and miRNA-responsive elements to 
provide additional insight into circRNA regulatory mechanisms.

However, many of these models remain largely proof of concept, 
relying on interaction profile similarities or data from RBP and miRNA 
interaction databases, which restricts their ability to identify novel 
disease-related circRNAs independently. Consequently, there is a press-
ing need for more generalized models that are capable of systemati-
cally prioritizing newly detected circRNAs. In addition, efforts should 
focus on developing interpretable and versatile deep learning models 
that integrate gene expression profiles, rather than relying solely on 
semantic disease–disease similarities, to enhance the interpretability 
of disease–disease similarities and improve predictions of target genes.

Although functional annotation algorithms for circRNAs have 
advanced substantially, not all circRNAs are functionally relevant. 
Recent studies suggest that most circRNAs may arise as nonadaptive 
by-products of eukaryotic splicing rather than as functional entities119. 
Therefore, incorporating changes in host gene expression or shifts in 
cell type composition during prioritization could improve the identifi-
cation of functional circRNAs while distinguishing them from splicing 
by-products. Notably, the suggested role of circRNAs in sequestering 
miRNAs and RBPs120 may hold true for circRNAs with a high density 
of binding sites1,2,49 but should not be considered as a universal prop-
erty of all circRNAs, especially when the number of miRNA- and/or 
RBP-binding sites per circRNA is low121. Thus, prediction of any miRNA 
and RBP regulatory axis should only be interpreted as a guide to pri-
oritize candidates for experimental validation. Overall, advancing the 
characterization of functional circRNAs requires refining algorithms 
to integrate multidimensional evidence to distinguish functional and 
nonfunctional circRNA. These computational efforts must also be 
coupled with systematic experimental validation to confirm the true 
regulatory role of candidate circRNAs.

Challenges in large-scale integration of circRNA 
sequencing data
Extensive studies over the last decade have generated a vast amount  
of circRNA sequencing datasets, offering a valuable resource for  
investigating circRNA biogenesis and biological functions (Supple-
mentary Table 1). However, integrating these large datasets presents 
several challenges related to sample preparation, library construction 
and data analysis pipelines (Fig. 5a).

RNA extraction and preparation
RNA quality (measured by RNA integrity number (RIN)) substantially 
impacts circRNA detection. Low RIN values are associated with fewer 
detected circRNAs, as degraded circRNAs are susceptible to RNase R 
digestion during circRNA enrichment18,67, reducing the number of BSJ 
reads required for circRNA detection algorithms.
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The choice of enrichment strategy is another critical factor 
affecting the efficiency of circRNA detection. Most studies use ribo-
somal RNA-depleted total RNA-seq for unbiased circRNA quantifi-
cation, but this approach yields a low proportion of back-splicing 
reads. By contrast, RNase R-treated RNA-seq improves circRNA 
detection sensitivity but introduces challenges such as variable 
digestion efficiency due to RNA secondary structure65,122, high vari-
ability between experimental replicates42 and nonspecific circRNA 
nicking during RNase R treatment78,123. Improved RNase R protocols 
employ polyadenylation-based linear RNA removal or G-quadruplex 
unfolding buffers to optimize linear RNA elimination. Optimizing  
RNase R concentration and treatment duration further enhances  
circRNA detection124, underscoring the need for standardized pro-
tocols to ensure reproducible experimental results. Some studies,  
such as circSC15 and CircRiC100, integrate poly(A)-enriched data-
sets for circRNA analysis. Platforms, such as MiOncoCirc125 and the  
Human Biofluid RNA Atlas57, use exome capture RNA-seq to profile  
the circRNA transcriptome in cancer and biofluids; this enhances 
circRNA enrichment while preserving accurate estimation of 
circular-to-linear ratios.

The variability in circRNA-detecting protocols introduces strong 
batch effects, which poses substantial challenges for large-scale 
integrative analysis. Tools such as CIRIquant42 have implemented a  
Gaussian mixture model to characterize enrichment efficiency and per-
form circRNA expression-level correction using paired RNase R-treated 
and untreated samples. A similar framework could be expanded 
to characterize and mitigate batch effects between total RNA and 
circRNA-enriched samples from similar tissue sources, thereby enhanc-
ing the robustness of integrative circRNA analyses.

Sequencing technologies and depth
Illumina and nanopore circRNA sequencing strategies each offer 
distinct trade-offs in circRNA detection. Despite its lower efficiency, 
Illumina sequencing is favored in most circRNA studies due to its 
cost-effectiveness. By contrast, long-read sequencing improves  
circRNA detection by capturing full-length isoforms. Oxford Nano-
pore Technology’s high sequencing speed facilitates rapid experi-
ments within days126, yet biases in rolling circle amplification and 
RCRT processes may impact quantitative analysis80. The FL-circAS127 
database contains full-length circRNA isoforms detected from several 
long-read sequencing studies12–14,77, while circAtlas version 3.0 (ref. 66) 
integrates both short-read and long-read sequencing datasets81,128. Both 
resources provide functional annotation, but integration of expression 
data from short-read and long-read platforms remains challenging. 
While long-read sequencing costs remain higher than those of current 
short-read sequencing platforms, ongoing improvements in detection 
efficiency and decreasing cost of the Oxford Nanopore and PacBio 
sequencing systems suggest that it may soon become standard for 
circRNA analysis.

Sequencing depth substantially impacts circRNA detection. In 
short-read data, only <1% of reads typically represent BSJs, necessitat-
ing large datasets for comprehensive circRNA detection. Long-read 
sequencing captures more circRNAs per gigabase of data, yet both 
Oxford Nanopore and PacBio technologies yield limited molecules 
per flow cell, making it difficult to achieve saturated detection of 
all expressed circRNAs14. Empirically, approximately 12 GB of total 
RNA-seq or 3–4 GB of RNase R-treated RNA-seq can detect around 
10,000 circRNAs in brain samples, whereas 5 GB of long-read sequenc-
ing data can detect >50,000 brain circRNAs13,14. Variations in circRNA 
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expression across tissues further complicate data size estimation. 
For example, circRNAs are highly abundant in tissues with elevated 
back-splicing activity (for example, brain, spinal cord, testis and 
heart83,84) or in those with high circRNA accumulation (for example, 
biofluids such as blood plasma57,129,130), which require less sequencing 
depth. By contrast, circRNA expression is generally low in other tissues, 
necessitating a substantially greater sequencing depth131. Importantly, 
many circRNAs are rare and may not be functionally relevant119; so 
pursuing the detection of low-abundance circRNAs should not be the 
highest priority.

CircRNA identification and multiomic integration algorithms
All circRNA analysis algorithms rely on identifying BSJ sites and employ 
various strategies to filter low-confidence circRNAs. Filtering based  
on the canonical GU/AG splice signal improves identification accuracy 
but may exclude novel yet unidentified circRNAs that arise from nonca-
nonical back-splicing. In addition, tools vary in their default stringency 
for minimum supporting reads45. While most tools do not filter based 

on BSJ counts or offer options to report all circRNAs, CirComPara2 
(ref. 44), circtools132 and KNIFE40 require a minimum of two support-
ing reads, whereas circRNA_finder28 and segemehl34 require a more 
stringent filter of five supporting reads. These discrepancies can sub-
stantially affect the sensitivity of circRNA detection. Furthermore, most 
tools require sophisticated processing of alignment results, leading to  
long computation times and high demands on resources. Therefore, 
highly efficient circRNA detection and quantification algorithms, such 
as the k-mer counting-based SPLASH2 tool36, are more suitable for 
scalable analysis of large datasets. However, advancements in this area 
remain limited and require further optimization.

The high sequence similarity between nuclear mitochondrial  
pseudogenes and the mitochondrial genome presents specific chal-
lenges for identifying mitochondrial-derived circRNAs. Initially, 
circRNAs detected from the mitochondrial genome were often 
excluded as artifacts, but recent studies have identified genuine 
mitochondrial-derived circRNAs with regulatory roles4,14,133. How-
ever, the biogenesis mechanism of mitochondrial circRNA remains 

RNA integrity (RIN) Enrichment strategy

Sequencing platform Data size requirements

Bioinformatic pipelines Paired omics datasets

Short read

Saturated

Softwares

Threshold
BSJ ≥ 5
BSJ < 5

mRNAseq

Riboseq CLIPseq

sRNAseq

Long read

High RIN

Low RIN

Reads

N
um

be
r o

f c
irc

RN
As

N
um

be
r o

f c
irc

RN
As

Unsaturated

Ribodepleted total RNA

Poly(A)–/RNase R treated

Singlecell and spatial circRNA sequencing

Spatial spotsCell 3

Cell 1 Cell 2

Cell 4

Chromatin
accessibility

CircRNA
expression

Genome
architecture

Gene
expression

AIbased multiomic integration algorithms
RNAseq

CircRNAseq

ATACseq

HiC

Base pairing
probability

High

Low

Linear RNA CircRNA

vs

CircRNAspecific datasets + models

a b

c

d

Fig. 5 | Challenges and opportunities in large-scale analysis of circRNA data. 
a, Challenges in integrating large-scale circRNA sequencing data. First, RIN is 
critical, as degraded circRNAs are lost during downstream processing, impeding 
the detection of BSJ reads. Diverse circRNA-enrichment strategies also lead 
to variations in detection efficiency and give rise to substantial batch effects, 
affecting the accuracy of circRNA quantification. Furthermore, short-read 
sequencing typically provides results at the BSJ level, while long-read methods 
allow for more complicated isoform-level quantification. Sequencing depth 
affects the saturation of circRNA detection, and variation in the sensitivity and 
filter threshold of different bioinformatic pipelines also increases the difficulty 
of integration. In addition, although paired sequencing datasets can provide 
evidence to infer circRNA regulation and functions, heterogeneity between 
different studies poses further challenges in the integration process. CLIP–seq, 
cross-linking immunoprecipitation followed by high-throughput sequencing. 

sRNA-seq, small RNA sequencing. b, Development of single-cell and spatial 
circRNA sequencing technologies provides an opportunity to characterize 
circRNA expression patterns with improved resolution. Here, optimized circRNA 
sequencing strategies are essential to detect circRNAs from limited material 
from single cells and spatial spots. c, Development of AI-based multiomic 
algorithms could integrate omic-specific features, providing critical insights 
into how genome architecture, chromatin accessibility and other epigenetic 
features affect circRNA biogenesis. ATAC–seq, assay for transposase-accessible 
chromatin with sequencing. d, A circRNA and its cognate linear RNA can exhibit 
distinct structures and functionalities. Therefore, the development of circRNA-
specific AI models requires the accumulation of circRNA training sets and the 
development of tailored algorithms to incorporate circRNA-specific features, 
such as exon scrambling patterns and unique BSJ sequences.

http://www.nature.com/naturegenetics


Nature Genetics

Review article https://doi.org/10.1038/s41588-025-02157-7

unclear, and the applicability of the canonical GU/AG splice site filter 
requires further investigation. Therefore, special efforts should also 
be made to improve algorithms for accurate identification of these 
mitochondrial circRNAs.

Integrating multiomics datasets could enhance the prioritization 
of functional circRNAs. Databases such as POSTAR2 (ref. 106) and 
starBase134 integrate cross-linking immunoprecipitation followed by 
high-throughput sequencing data to predict RBP- and miRNA-binding 
sites, while other studies include mass spectrometry135–137, ribosome 
and/or polysome profiling138–141 and m6A or methylated RNA immuno-
precipitation sequencing142 for assessing circRNA coding potential. 
However, mass spectrometry analysis relies on a stringent estimation 
of false positive rates and may yield false discoveries if not carefully 
controlled143. Integrating evidence from diverse omic approaches 
could provide more robust functional predictions144. Moreover, these 
datasets often originate from independent studies, introducing sam-
ple heterogeneity that may bias predictions. Additionally, the lack of 
large-scale multiomic circRNA studies hinders the development of 
circRNA-specific integration algorithms.

Future development of circRNA sequencing 
techniques and AI-based algorithms
Current strategies for circRNA sequencing have substantially improved 
the sensitivity and accuracy of circRNA identification and reconstruc-
tion. However, neither of these strategies is able to achieve highly  
efficient circRNA detection when the starting materials are limited, 
posing challenges for further characterization of circRNAs at single-cell 
and spatial resolution. Additionally, existing single-cell and spatial 
barcoding methods primarily capture mRNA poly(A) tails145, which 
do not align well with current circRNA sequencing approaches. There-
fore, advancing high-throughput techniques for single-cell and spatial 
RNA-seq is crucial for understanding circRNA functions across diverse 
microenvironments and biological processes (Fig. 5b). Promising solu-
tions include integrating efficient long-read circRNA sequencing with 
single-cell barcoding technologies to achieve full-length circRNA 
profiling at cellular resolution and developing deep learning-based 
imputation algorithms to enable a comprehensive understanding of 
the cellular circRNA expression landscape146.

Numerous deep learning-based computational methods have 
emerged for integrating single-cell and multiomics data. These models 
facilitate accurate integration of diverse omic modalities based on cell 
identities147 or spatial information147 and hold promise for regulatory 
inference148. However, the lack of paired circRNA sequencing datasets 
has impeded the widespread integration of multiomics circRNA analy-
sis. Because many circRNAs are by-products of host gene expression, 
future efforts could incorporate their coexpression as anchors to align 
circRNA expression with gene expression and chromatin accessibility 
datasets. Moreover, the development of single-cell and spatial circRNA 
sequencing strategies would also enable adaptation of these integrative 
models for circRNA research. The availability of multiomic resources 
and deep learning models thus could expedite exploration of circRNA 
biogenesis and regulatory mechanisms (Fig. 5c).

Simultaneously, AI-driven RNA language models have demon-
strated promising capabilities in predicting RNA structures and 
functions. For example, an mRNA 5′ untranslated region language 
model accurately predicts ribosome loading, translation efficiency 
and mRNA expression levels149. Additionally, generative diffusion 
models have successfully designed novel proteins de novo150. There-
fore, the development of circRNA-specific language models could 
facilitate rational design of circRNA-based vaccines and therapeutics 
with desired properties151. However, given the distinct structures and 
biological functions of circRNAs compared to mRNAs, most current 
mRNA models are not directly applicable to circRNA analysis. Thus, 
establishing circRNA-specific AI models requires the accumulation 
of circRNA-specific training data. However, the limited number of 

experimentally validated circRNA structures and functions presents 
a challenge to progress in this field. Although efforts have been made 
to profile the functionality of circRNAs, many studies even relied on 
bioinformatic prediction to perform this task, the reliability of these 
predictive results remains unexamined and only circRNAs validated by 
sophisticated means should be taken as the basis for subsequent works. 
In addition, the lack of free ends in circRNA poses specific computa-
tional challenges152, necessitating models that can accurately incorpo-
rate circRNA-specific features to capture the unique characteristics of 
these molecules (Fig. 5d).

Conclusions
Research on circRNAs has underscored their potential as therapeu-
tic agents and RNA drug platforms. Advances in long-read circRNA 
sequencing have overcome challenges posed by high sequence simi-
larity between circRNAs and linear transcripts, enabling in-depth 
profiling of circRNA diversity. The field now prioritizes developing 
single-cell and spatial methods to map cellular expression patterns and 
spatiotemporal regulation of circRNAs and to enable robust statistical 
analysis across cells and spatial spots. Combining these approaches 
with AI-powered multiomic algorithms holds promise for cluster- and 
spatial domain-guided integration of transcriptomic and epigenetic 
data. This integration could connect circRNA expression to gene activ-
ity and epigenetic modifications, providing insights into the biogenesis 
mechanisms and regulatory functions of endogenous circRNAs.

However, the relatively low abundance of circRNA presents chal-
lenges in detecting these molecules from limited material in single-cell 
or spatial contexts. While long-read sequencing strategies have 
improved the sensitivity and accuracy of circRNA characterization, 
their effectiveness is still limited. Optimizing circRNA sequencing tech-
niques, such as enhancing reverse transcriptase for RCRT, is crucial for 
refining methods suitable for single-cell and spatial characterization.

Additionally, recent advances in AI models have demonstrated 
remarkable accuracy in protein and RNA modeling64,149, setting 
the stage for AI-based functional prediction and rational design of  
circRNAs. However, it should be noted that the biogenesis and regu-
lation mechanisms of circRNAs are distinct from those of mRNA 
transcripts, necessitating the development of circRNA-specific AI 
models. In addition, canonical deep learning RNA models often over-
look circularization constraints and may not be directly applicable to 
circRNA modeling. Consequently, developing AI algorithms tailored 
for effectively mining the vast circRNA datasets accumulated thus far 
is imperative. Current circRNA studies provide rich resources but also 
pose challenges in integrating data from diverse sources, sequencing 
protocols and analysis pipelines, a task in which AI algorithms excel. 
We believe that the establishment of circRNA-specific AI models holds 
immense potential to advance circRNA characterization and applica-
tions in the near future.
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