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SUMMARY
Despite recent advances in imaging- and antibody-based methods, achieving in-depth, high-resolution pro-
tein mapping across entire tissues remains a significant challenge in spatial proteomics. Here, we present
parallel-flowprojection and transfer learning across omics data (PLATO), an integrated framework combining
microfluidics with deep learning to enable high-resolution mapping of thousands of proteins in whole tissue
sections. We validated the PLATO framework by profiling the spatial proteome of the mouse cerebellum,
identifying 2,564 protein groups in a single run. We then applied PLATO to rat villus and human breast cancer
samples, achieving a spatial resolution of 25 mm and uncovering proteomic dynamics associated with dis-
ease states. This approach revealed spatially distinct tumor subtypes, identified key dysregulated proteins,
and provided novel insights into the complexity of the tumor microenvironment. We believe that PLATO rep-
resents a transformative platform for exploring spatial proteomic regulation and its interplay with genetic and
environmental factors.
INTRODUCTION

Dissociation-based single-cell technologies have enabled the

deep characterization of cellular heterogeneity and complexity.1

However, how cells constitute tissue organization, which is

vital for understanding the design principles of complex tissues

and tumors, remains an open issue. Spatial genomics and tran-

scriptomics2–4 have recently emerged to bridge this gap by aid-

ing in investigations on tissues in situ at cellular and subcellular

resolution. Nevertheless, these sequencing-based technologies

have been primarily confined to indirectly measuring cellular

states, as most biological processes (BPs) are controlled by pro-

teins. The abundance relationship between protein and tran-

script is complicated and dependent on the experimental

context, which challenges biological interpretation. Furthermore,

protein posttranslational modifications (PTMs), involved in a

large number of BPs, extend far beyond the coverage of nucleic

acid measurements. High throughput and spatial protein
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profiling, therefore, promises to revolutionize our understanding

of BPs not only from a fundamental cell biology perspective but

also from a clinical perspective.

Recent advances in multiplexing technologies have promised

to simultaneously map up to hundreds of proteins in the same

tissue section by using antibodies tagged with DNA,5 fluoro-

phore,6 or metal.7,8 Nevertheless, these approaches, along

with other protein profiling schemes based on immunoassay,

ultimately have suffered from several inherent limitations.

Generating antibodies, in practice, is prohibitively time

consuming and expensive. Moreover, technologies based on

these approaches share a major caveat in the limited number

of antigens they probe, which is far short of the actual

complexity of the proteome.9 The situation is even more funda-

mentally skewed, considering alternatively spliced transcripts

and PTMs. In this regard, unbiased and proteome-scale spatial

protein mapping approaches are urgently needed to overcome

such challenges.
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Mass spectrometry (MS)-based proteomic approaches offer

label-free analyses with high specificity and deep proteomic

coverage10,11 and have recently been applied to reveal key

regulators in response to drug perturbation at single-cell resolu-

tion.12 As a complement to MS, laser capture microdissection

(LCM) permits areas of interest within a tissue to be isolated

and subsequently provides comprehensive molecular coverage

of proteomes.13,14 For instance, a recent development of deep

visual proteomics (DVP),15 which combines ultrahigh-sensitivity

MS and LCM, provides the ability to probe small to cellular ob-

jects in depth. These methods hold great promise for prote-

ome-wide spatial protein profiling of focused tissue areas, but

they first necessitate highly specialized laboratory facilities.

Moreover, these approaches are typically low throughput and

inevitably involve bottlenecks in whole-tissue level investigations

in which extremely high-throughput applications are necessary.

An alternative approach involves the use of matrix-assisted laser

desorption ionization MS imaging (MALDI-MSI). The strength of

MALDI-MSI is the ability to directly survey spatial proteomic

complexity down to the cellular or subcellular scale, but this

method has proven to be difficult because of several challenges,

including simultaneous peptide quantification and identifica-

tion,16 as well as low-abundance proteins. Most recently, a mi-

croscaffold-assisted spatial proteomics (MASP) strategy was

developed,17 which utilizes micro-compartmentalization of tis-

sues based on a 3D-printed microscaffold to map thousands

of proteins at whole-tissue level. However, a large number of

liquid chromatography-tandem mass spectrometry (LC-MS/

MS) measurements (�900 samples) are still necessary, and the

resolution is low (400 mm).

Thus far, it is highly desirable to develop newmethods for high

spatial resolution, proteome-scale mapping, covering all regions

of a tissue slice, which do not require sophisticated imaging but

leverage the power of MS to achieve high throughput and cost

efficiency. Here, we present a high-resolution spatially resolved

proteomics framework based on parallel-flow projection and

transfer learning across omics data (PLATO) to localize thou-

sands of proteins covering all regions of a tissue slice. We first

demonstrated that our approach allows for spatial expression

patterns to be reconstructed at the whole-tissue level using the

mouse cerebellum. We further validated the ability of PLATO to

measure the protein expression of intestinal villi at 25 mm spatial

resolution. Finally, we applied PLATO to heterogeneous human

breast cancer tissues, identifying two distinct tumor subtypes

characterized by dysregulated protein profiles and a complex tu-

mor microenvironment.

RESULTS

The PLATO framework
A key limitation of current LC-MS/MS-based spatial proteomics

is its low detection throughput. To overcome this, we developed

PLATO, a microfluidics-based and transfer learning-based

spatial proteomics framework, which is aimed at determining

high-resolution spatial protein patterns across entire tissues by

using minimal LC-MS/MS measurements (Figure 1A). The

PLATO workflow begins with cryosectioning three consecutive

tissue slices: the middle slice is used for generating reference
2 Cell 188, 1–15, February 6, 2025
omics data through histological staining or spatial omics (e.g.,

spatial transcriptomics), while the first and last slices are sub-

jected to microfluidics-based proteomic profiling at different an-

gles. Each slice is covered by parallel microchannels, and after

on-chip digestion, peptides are collected for LC-MS/MS anal-

ysis. These measurements, referred to as parallel-flow projec-

tions, resemble ray-based tomography.18–20

To reconstruct protein spatial distributions, we developed

Flow2Spatial, a transfer learning algorithm that utilizes reference

omics data (e.g., H&E staining, spatial transcriptomics, or spatial

metabolomics) to train a deep learning model for predicting pro-

tein distributions from the parallel-flow projections. Instead of

relying solely on mRNA-protein correlations, Flow2Spatial em-

ploys clustering features and orthogonal projections to infer

spatial protein patterns (see STAR Methods).

We validated PLATO by addressing several key aspects: (1)

optimizing on-chip MS sample preparation, including chip

design and digestion methods; (2) verifying cross-contamina-

tion, reliability, and reproducibility in protein quantification; and

(3) assessing Flow2Spatial’s accuracy in reconstructing spatial

patterns through simulated datasets and experimental ap-

proaches such as immunofluorescence (IF) and LCM-based

proteomics.

On-chip proteomic preparation and cross-
contamination evaluation
To achieve parallel and high-throughput tissue sampling, we used

a microfluidic chip featuring 48 or 70 parallel microchannels, with

each channel measuring 25–100 mm in width. The width of the

channels matched the thickness of the channel walls across all

chips (Figures 1B and S1A). The channels were designed to be

equal in length to minimize fluid resistance differences, improving

sample collection efficiency (Figure S1B). Since no ready-to-use

methods were available for chip-based nanogram-scale prote-

omics, we systematically optimized the on-chip proteomic prepa-

ration workflow. We compared a surfactant-aided pipeline using

4-hexylphenylazosulfonate (AZO)21 and n-dodecyl-b-D-maltoside

(DDM)22 with a direct-lysis pipeline. The direct-lysis method

resulted in a 2-fold increase in the number of identified

protein groups, compared with the surfactant-aided approach

(Figures 1C and S1C). This improvement likely stems from trypsin

adsorption to the microchannel before digestion, which reduces

nonspecific protein adsorption (Figure S1D). Additionally, the

direct-lysis method provided effective, unbiased on-chip tissue

digestion (Figures 1D and S1E).

Next, we evaluated cross-contamination between microchan-

nels, as proteins may diffuse across adjacent channels during

tissue lysis. Although no leakage was observed by imaging fluo-

rescent molecule flow (Figures 1E and S1F), a more stringent

MS-based evaluation was conducted to assess protein diffusion

(Figure 1F). Specifically, after placing the 25-mm chip on tissue,

we added digestion buffer to three adjacent microchannels,

including an E. coli lysis mix in the middle channel. MS analysis

detected no E. coli protein signals in the adjacent channels.

Similar tests were performed on 100-mm chips with consistent

results (Figure S1G). These results demonstrate that the on-

chip proteomic preparation workflow can effectively extract pro-

teins with minimal cross-contamination.
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Figure 1. Design and experimental validation of the PLATO framework

(A) Schematic representation of the PLATO framework. The tissue was first cut along the axis to obtain three consecutive sections (with thicknesses of 8–10 mm),

and the middle sections were subjected to H&E staining or spatial omics. Subsequently, the first and third slices were subjected to microfluidic chip-based

parallel-flow proteomic profiling at two different angles. Slices were digested on the chip. Peptides in each microchannel were drawn out, collected, and

subjected to LC-MS/MS quantification. The measurements for each angle are referred to as the parallel-flow projection. Finally, reconstruction of protein

expression patterns was performed by using the Flow2Spatial algorithm, based on the images of the middle slices and two sets of parallel-flow projections.

(B)Microfluidic device used in PLATO. Left, the assembled devicewith PDMSchip, two acrylic plates, and vacuumchamber. Right, the top view of the PDMS chip

with food dye in the channels. Digestion reagents are pipetted to the inlets and drawn into the outlets by the vacuum chamber, which is situated on the outlets.

(C) Optimization of on-chip tissue digestion. Left, tissues underneath the microchannel were lysed by MS-friendly surfactants such as AZO and DDM. Then, the

lysed tissue was processed by reduction, alkylation, and trypsin digestion. Meanwhile, tissues in the microchannels were directly lysed by trypsin without extra

reduction and alkylation processes. Right, the number of detected protein groups in each condition.

(D) A mouse expressing red fluorescent protein was used to validate tissue digestion. Brain slices were covered by a microfluidic chip and subjected to on-chip

digestion. Most tissue regions underneath the microchannels were digested, whereas those underneath the walls remained intact.

(E) Leakage evaluation using fluorescent dye of propidium iodide (PI).

(F) Leakage evaluation of on-chip digestion using spike-in bacterial proteins. Upon covering chip on the tissue, three adjacent microchannels were chosen to add

digestion buffer, with additional protein lysis buffer of E. coli added to the middle microchannel (middle). Upon digestion, the flows were collected and analyzed

using LC-MS/MS (right), followed by identifying E. coli proteins within the two side microchannels.

See also Figure S1.
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Quantitative evaluation of on-chip proteomic samples
To evaluate the performance of PLATO in protein quantification,

which is crucial for accurate spatial reconstruction, we systemat-

ically assessed its sensitivity, proteome coverage, and reproduc-
ibility. We conductedmeasurements on a dilution series of mouse

cerebellum tissue lysates, ranging from 1 to 8 mL, with a protein

concentration of approximately 30 ng/mL. As expected, metrics

improved with larger lysate volumes. Notably, even at the lowest
Cell 188, 1–15, February 6, 2025 3
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Figure 2. Protein quantification and reproducibility evaluation

(A) Schematic representation of the protein quantification performance validation workflow, using mouse cerebellum tissue. A dilution series (1, 2, 4, and 8 mL) of

mouse cerebellum tissue lysates was obtained bymixing the products of 10microchannels from 1 to 8 mL, with each diluted sample analyzed in triplicate (left and

middle). These samples were subsequently analyzed by LC-MS/MS. Next, the detected protein groups and peptides, as well as overlapping among replicates,

were identified (right). The colored tubes denote different lysate concentrations.

(B) Abundance of detected protein groups in each sample. Each line denotes a detected protein group and is colored according to its abundance.

(C) Histogram showing the coefficient of variation (CV) of each protein group’s abundance in four groups with different dilutions. The red line indicates 30%CV for

visual reference.

(D) Boxplots showing the relative deviation between the actual quantitative abundance ratio and the theoretical ratio of each protein between adjacent dilutions

groups (1 and 2 mL; 2 and 4 mL; 4 and 8 mL). The red line indicates a 30% relative deviation for visual reference.

(E) Representative examples of proteins showing quantitation of protein abundance calculated from peak area in four groups with different dilutions. Data are

shown as the mean ± SD from n = 3 independent measurements.

(F) Quantitative reproducibility in a rank order plot for the dilution with the lowest level (1 mL) of lysate concentration with other sets of dilutions (2, 4, and 8 mL from

top to bottom).

(G) Schematic representation of the protein quantification performance validation workflow, using a larger number of samples. On-chip digestion of five

consecutive mouse cerebellum sections was performed (upper left). This generates 9 QC samples and 85 microchannel-derived samples (upright). These

samples were analyzed by LC-MS/MS with the data-independent acquisition (DIA) model (bottom). Finally, the raw intensity of the identified protein groups was

adjusted by using the intensity of iRT.

(H) Histogram showing CV of each protein group’s abundance in QC samples. The red line indicates 30% CV for visual reference.

(I) Correlation between the abundance of GAPDH protein and cell density, calculated from the H&E image. Each circle represents the cell density and GAPDH

abundance in the channel sample.
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amount of 1 mL (�30 ng), 85.32% of 2,931 proteins were repro-

ducibly detected (Figures 2A and 2B). Most proteins showed

low quantification variation, as reflected by their coefficients of

variation (CVs) (Figures 2C and 2D). Quantification accuracy was

validated by comparing experimental values with theoretical

abundances, showing a strong linear response, such as for dyna-

min-2 (DNM2), tyrosine-protein kinase Lyn (LYN), and clathrin light
4 Cell 188, 1–15, February 6, 2025
chain A (CLTA) (Figure 2E). The abundance ranking of proteins

across different dilutions also exhibited a high correlation (Fig-

ure 2F). Robustness was further confirmed by analyzing 85micro-

channel-derived samples, yielding low CVs in quality control (QC)

samples (Figures 2G and 2H). Additionally, we observed a linear

correlation between glyceraldehyde-3-phosphate dehydroge-

nase (GAPDH) expression and cell density (Figure 2I). These
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Figure 3. Workflow of the Flow2Spatial algorithm and performance evaluations on simulated datasets

(A) Reconstructing spatial patterns solely on orthogonal projections proves to be insufficient.

(B) Workflow of the Flow2Spatial algorithm. The transfer learning process is a two-step procedure, encompassing transfer learning (upper) and reconstruction

(lower). In the first step, Flow2Spatial leverages readily available omics data, such as histological staining, spatial transcriptome, or spatial metabolome, from the

middle section. This data serve as the foundation for constructing a generator tasked with producing a novel spatial dataset by randomly integrating fully

measured spatial omics data, which aims to enhance the diversity of spatial distributions. Subsequently, the entire set of generated spatial data is employed as

the training dataset for the deep learning model. In detail, Flow2Spatial employs an autoencoder-like deep learning model to establish connections between

(legend continued on next page)
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results demonstrate the reliability and reproducibility of PLATO,

supporting spatial reconstruction efforts.

Reconstruction workflow of Flow2Spatial
Previous studies have shown that classic computer tomography

cannot resolve the reconstruction problem when the number of

parallel-flow projections is less than three18,23 (Figure 3A). We

thus developed a deep learning-based method, Flow2Spatial, to

reconstruct the original spatial distribution from the parallel-flow

projected values of a few angles. In theory, if we were to use all

potential spatial distributions in a 2D space as a training dataset,

we could build a deep learning model that connects these spatial

distributions to the values of their corresponding projection strips.

However, the size of such a training dataset grows exponentially

as the number of spots in the 2D space increases. For example,

in a basic scenariowhere a gene is expressed or not in a 2D space

with dimensions of N3M, the training dataset would become as

large as 2N3M. In practice, creating and handling such a massive

deep learning model is nearly impossible.

To address this challenge, we simplify the problem by incorpo-

rating information of other readily available spatial omics data

from adjacent tissue sections, which exhibit high correlation

with spatial proteomic patterns. This approach is based on the

well-established notion of the strong correlation of spatial molec-

ular patterns across different omics data, as supported by previ-

ous studies.5,24–35 Our findings also demonstrate that consistent

spatial clusters can be generated by different spatial omics (Fig-

ure S2), making it feasible for the deep learning model to recon-

struct spatial distributions within a closely related latent space.

We refer to this approach as ‘‘transfer learning across omics

data,’’ with the accessible omics data used for training termed

‘‘the reference.’’

Specifically, Flow2Spatial operates through two key steps:

transfer learning and reconstruction (Figure 3B). In the first

step, Flow2Spatial integrates easily accessible omics data

from the middle tissue section, such as histological staining,

spatial transcriptomics (ST), or spatial metabolomics. It builds

a generator to create a new spatial dataset by randomly

combining these fully measured spatial omics, thereby

enhancing the diversity of spatial distributions. Subsequently,

all generated spatial data serve as the training set for the deep

learning model (Figure S3). Specifically, Flow2Spatial employs

an autoencoder-like deep learning model to establish connec-

tions between parallel-flow projections and spatial information.

During the encoding phase, in silico projections of the newly

generated spatial dataset are performed, simulating the micro-

fluidic chip’s parallel-flow projection to create pseudostrips

that span the entire section. In the decoding phase, a residual
parallel-flow projections and spatial information. This model embeds all spatial pa

the values of strips after projection. In the reconstruction step, the trained decod

proteome.

(C) Left, validation of the Flow2Spatial algorithm, using simulated data from Sli

sampling strategy, the tissue was sliced along two orthogonal axes in silico. For e

the entire tissue, where in each pseudostrip, the expression of genes was obtaine

Next, the Flow2Spatial algorithm is employed to reconstruct the spatial patterns

seq and reconstructions.

See also Figures S2 and S3.
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network (ResNet)-based deep learning model36 is trained using

the pseudostrip values and corresponding ground truth data to

minimize L1 loss (Figures 3B and S3). Finally, the model embeds

all spatial patterns from the training dataset into a latent space,

based on the relationships among the projected strip values. In

the reconstruction step, the trained decoder reconstructs the

spatial distribution of the experimentally identified proteome.

Spatial distribution of proteins can be accurately
reconstructed by Flow2Spatial
To evaluate the potential of Flow2Spatial for resolving spatial het-

erogeneity, we first carried out in silico simulation experiments us-

ing a Slide-seq dataset of mouse cerebellum,37 of which the ST

profile was used as ground truth (Figure 3C). To mimic the micro-

fluidic chip-based sampling strategy, the slice was analogously

sliced along two orthogonal axes. For each angle, the tissue

was sliced into consecutive 25-mm pseudostrips spanning the

entire tissue, and in each pseudostrip, the expression of genes

was obtained by summing the expression values of the spots un-

derneath this pseudostrip. We compared ground truth profiles

with the spatial reconstructions obtained from Flow2Spatial

and Tomographer.18 After spatial reconstruction, we computed

Spearman’s correlation coefficient, the relative error, and the total

absolute difference among spots between reconstructions and

the ground truth for all genes. Based on these metrics, we

concluded that Flow2Spatial outperformed Tomographer in

spatial pattern reconstruction of given genes (Figures S4A and

S4B), particularly in detecting fine structures (Figures 3C and

S4B) and clustering different region types (Figures 3C and S4C).

Collectively, these results demonstrate the robustness of our

approach and show its ability to dissect tissues at high resolution.

Spatial proteomics mapping of mouse cerebellum
Tovalidate theperformanceofFlow2Spatial,weemployedPLATO

to generate a spatial protein map of the cerebellum (H&E staining

as reference), followed by extensive validation using spatial tran-

scriptomics, LCM-based spatial proteomics, and IF staining (Fig-

ure 4A). A microfluidic chip featuring 48 parallel channels, each

50 mm wide with equal channel and wall widths, was used for

LC-MS/MS detection. This resulted in the identification of 6,086

proteingroups,ofwhich5,722were retainedafterQC(FigureS4D).

Finally, a median of 2,564 proteins per spot was reconstructed.

This represents a significant improvement, by at least an order of

magnitude, over traditional antibody-based or MALDI-based

spatial proteomicsmethods.6,7Clusteringbasedon theseproteins

revealed four distinct structural proteomic landscapes corre-

sponding to histologically defined regions: the molecular layer,

granular layer, fiber tracts, and lateral recess (Figure S4E).
tterns in the training set into a latent space, based on the relationships across

er is used to reconstruct the spatial distribution of the experimentally detected

de-seq spatial transcriptomics. Briefly, to mimic the microfluidic chip-based

ach angle, the tissue was sliced into consecutive 25 mm pseudostrips spanning

d by summing the expression values of the spots underneath this pseudostrip.

of detected genes. Right, visualization of gene expression generated by Slide-
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To assess the accuracy of Flow2Spatial in identifying spatial

protein patterns, we collected 236 tissue voxels (�100 3

100 3 10 mm) for LCM-based spatial proteomics (Figure 4B).

LC-MS/MS analysis yielded an average of 1,849 protein groups

after outlier removal (Figure S4F). When comparing the spatial

proteomes between PLATO and LCM, we observed strong

Spearman correlations across brain regions: molecular layer

(0.89), granular layer (0.87), fiber tracts (0.82), and lateral recess

(0.74) (Figure 4C). These correlations closely matched the base-

line Spearman’s coefficient of 0.80 observed among LCM sam-

ples from the same region (Figure S4G). Notably, high correla-

tions were also maintained at regional boundaries (molecular

layer and granular layer: 0.89, granular layer and fiber tracts:

0.86) (Figure 4D). To further evaluate pixel-level concordance,

we calculated the Spearman’s coefficients between each LCM

sample and the corresponding spots in the PLATO map (Fig-

ure 4E) and the spatial transcriptomics data (Figure S4H).

Only PLATO exhibited high expression correlations with the

corresponding LCM samples, underscoring the accuracy of

Flow2Spatial reconstructions.

Finally, IF staining of 20 region-enriched proteins (Figure 4F)

confirmed that their spatial distributions closely aligned with

the Flow2Spatial reconstructions (Figures 4F and S5). Collec-

tively, these findings demonstrate that PLATO reliably maps

the anatomical locations of proteins with high accuracy.

Ablation experiment on PLATO performance
To confirm that various spatial omics datasets can serve as refer-

ences for PLATO,we employed Flow2Spatial to reconstruct these

proteins using three different spatial omics datasets as refer-

ences, including histology (H&E staining), ST, and spatial metab-

olome (MALDI-MSI). Notably, we observed a high degree of

concordance in the clustering results of these reconstructions

(Figure S6A). After calculating Spearman coefficient for the results

reconstructed from references of H&E staining and ST, we found

a median correlation of 0.85 (interquartile range: 0.82–0.87)

(Figure S6B). Collectively, these findings demonstrate that

Flow2Spatial consistently reveals the molecular organization of

tissue heterogeneity, irrespective of the reference dataset used.

It should be noted that PLATO’s ability to reconstruct the

spatial distribution of a specific protein does not rely on the

expression of its original mRNA but on the learned distribution

patterns of various molecules. To verify this, we sought to inves-

tigate whether mRNAs with low correlation to proteins could still
Figure 4. Experimental validation of PLATO

(A) Workflow illustrating the experimental validation of PLATO on the mouse cer

spatial proteomics using PLATO, followed by spatial transcriptomics (MAGIC-se

rescence (IF) antibody staining.

(B) Top, image of the cerebellar section after LCM with regional annotations. Bo

(C andD) Spearman’s correlation of protein expression between LCM-based prote

and at regional boundaries. Each subgraph includes a schematic representation

dance data were log transformed and normalized using the normalizeBetweenAr

(E) Pixel-by-pixel Spearman’s correlation of protein expression between LCM-bas

represented by triangles. Lost: failed collections during microdissection and filter

represented by circles.

(F) Validation of Flow2Spatial by IF staining and LCM-based proteome. Left, the sc

validated by IF staining and LCM proteome.

See also Figures S4, S5, and S6.
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effectively contribute to protein reconstruction within the PLATO

framework. We divided reference genes of ST into two groups

based on their expression similarity between mRNA and protein:

highly correlated and lowly correlated. Each group served as a

reference for subsequent transfer learning and spatial recon-

struction. As expected, the results of Flow2Spatial based on

two types of references demonstrated a strong correlation,

with a median Spearman’s coefficient of 0.89 (interquartile

range: 0.86–0.91) (Figure S6C). Moreover, regionally enriched

genes and clustering results also emphasized that the correla-

tion level between mRNA and its corresponding protein does

not influence the performance of Flow2Spatial reconstruction

(Figure S6C).

To test the specificity of Flow2Spatial, we conducted experi-

ments to assess whether Flow2Spatial could accurately recon-

struct protein distributions when provided with incorrectly input

reference images. We first swapped the values in the strips ob-

tained from two different angles in PLATO. Specifically, we re-

placed the valuesobtained fromoneanglewith those fromanother

angle. After Flow2Spatial reconstruction, we observed a disor-

dered clustering result (Figure S6D). Notably, regional markers

such as claudin-11 (CLD11) and chloride intracellular channel pro-

tein 6 (CLIC6) exhibited changes in their orientation in the recon-

structions. We further randomly shuffled the values in the strips

before performing Flow2Spatial reconstruction. As expected, we

found that both the clustering patterns and regional markers

were disrupted (Figure S6E). These results underscore the high

level of specificity exhibited by the Flow2Spatial algorithm.

Spatial proteomics mapping of the intestinal villus
To validate whether our method allows for high spatial resolution

mapping, we further applied PLATO to large intestinal villus tis-

sue from an adult rat. A microfluidic chip featuring 70 parallel

channels, each 25 mm wide with equal channel and wall widths,

was utilized (Figure 5A). Detection using LC-MS/MS successfully

yielded a total of 1,986 protein groups (Figure 5B; Table S1), sub-

sequently followed by Flow2Spatial reconstruction. Finally, a

median of 1,183 proteins per spot was reconstructed, and

spatial expression of representative proteins is shown in Fig-

ure S7A. Clustering based on these proteins identified four

basic structural proteomic landscapes that were histologically

discernible as epithelial cells, lamina propria, and muscularis

(Figure 5C), in which representative proteins in these structures

were then validated by IF (Figure 5D). For example, MYH11, a
ebellum tissue. Consecutive sections of cerebellar tissue were processed for

q), laser capture microdissection (LCM)-based proteomics, and immunofluo-

ttom, the number of LCM samples collected.

omics and Flow2Spatial reconstructions, analyzed both within specific regions

of the cerebellar region, with dot color indicating their density. Protein abun-

rays function from the limma package.

ed proteomics and Flow2Spatial reconstructions. QC, quality control samples

ed samples represented by x-shaped markers. Collected: finally used samples

hema of IF staining by 20 antibodies. Right, four region-enriched proteins were



Figure 5. Spatial proteomics mapping of villi

(A) Structure of intestinal villus.

(B) Implementation of PLATO in rat intestinal villi. Left, a bright-field image of villus labeled with the microfluidic channels. Right, the number of obtained protein

groups for each microchannel.

(C) Clustering based on spatial reconstructions. Two clustering resolutions are displayed, with higher resolution identifying more clusters. At resolution 0.1, four

distinct clusters were detected, while resolution 0.5 identified six clusters. Each cluster is visualized in a different color for clarity. Epi-1, -2, and -3 represent

epithelial layers 1, 2, and 3 in the clustering results, respectively.

(D) IF staining validation of four marker proteins.

(E) Spatial expression of different transporters.

(F) Schematic representation of the experiment: colitis was induced by DSS administration in drinking water for 6 days.

(G) Changes in body weight in each condition.

(H) Number of upregulated and downregulated genes in each cluster between DSS and naive (left). Both upregulated and downregulated changes represent

variations in DSS relative to naive. Heatmap of protein expression in each cluster for each condition. Protein groups with dramatic changes are highlighted.

(I) Overlap of enriched GO biological processes (BPs) of the three epithelial layers (top). Count of GO BP terms enriched in at least two layers of the epithelium

(bottom).

(J) Expression of transporters (up) and representative protein of SLC16A1 in villi.

See also Figure S7.
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marker of smooth muscle cells, was exclusively expressed in the

muscularis. We also identified transporters closely related to

nutrient absorption of villi in different epithelial layers (Figure 5E).

Interestingly, some transporters exhibited a region-specific

expression pattern. For example, transporters correlated with

ions, carbohydrates, and peptides showed greater enrichment

in the outer epithelial layer, whereas those related to proteins

and carbohydrate derivatives were prevalently expressed in all

three epithelial layers.

We next sought to unveil the temporal proteomic dynamics of

the large intestine during inflammation by taking advantage of

the widely used dextran sodium sulfate (DSS)-induced model

of colitis. In brief, we treated wild-type rats with DSS in drinking

water for 6 days (Figure 5F), during which DSS exposure resulted

in continuous body weight loss (Figure 5G) as well as diarrhea,

rectal bleeding (Figure S7B), and shortened colon and intestine

length (Figure S7C). Histological analysis confirmed epithelial

damage, such as desquamation of the epithelial layer on day 6

(Figure S7D). We then performed PLATO on both naive and

DSS-treated villi (Figures S7E and S7F; Table S1) and computed

differentially expressed protein groups (DEPs) for each cluster.

As shown in Figure 5H, epithelial layers contained the largest

number of DEPs, most of which were significantly downregu-

lated during inflammation; one example is CD59, a well-known

epithelial marker of ulcerative colitis and Crohn’s disease.38

Further, Gene Ontology (GO) enrichment analysis of these

DEPs showed that the outer epithelial layer experienced the

most dysregulation of BPs after DSS treatment, compared with

that of the inner layer (Figures 5I and S7G). We then counted

the GO BP terms enriched in at least two layers of the epithelium

and found that certain terms related to localization and transport

were the most common. For example, transporters of organic

solutes (choline transporter-like protein 1 [SLC44A1]) and inor-

ganic ions (chloride anion exchanger [SLC26A3]) in the large in-

testine appeared dysfunctional after DSS treatment (Figure S7H).

The spatial distribution of transporter proteins was altered after

DSS treatment (Figure 5J). Collectively, these results demon-

strated that PLATO can faithfully capture DSS-induced spatial

proteomic changes at a pixel size of 25 mm.
Figure 6. Spatial proteomics of frozen breast cancer tissue
(A) Schematic representation of the experiment: breast cancer tissue sliceswere s

immunofluorescence (IF) staining, respectively.

(B) Unsupervised clustering of PLATO spots based on protein abundance.

(C) Schematic diagram of microdissection points. White square boxes represent

(D) Regional concordance between LCM-based proteome and PLATO reconstru

Spearman’s coefficient was calculated. The protein abundance was log transform

package.

(E) Spatial distribution of representative proteins by PLATO, IF staining, and LCM

(F) Left, the spatial distribution of epithelial growth factor receptor 2 (ERBB2) and

and ESR1 by LCM proteome.

(G) Dot plot showing the protein expression levels of PAM50 gene set in two tum

(H) Differentially expressed protein groups between the two tumor subtypes.

(I) Network analysis of differential protein interactions in the two tumor subtypes

proteins in the network.

(J) MSigDB hallmark gene set enrichment based on the differentially expressed p

using Fisher’s exact test, with p values adjusted for false discovery rate (FDR).

(K) Spatial distribution of epithelial mesenchymal transition (EMT) and estrogen re

package. Scores reflect the average expression levels of enriched DEPs within e

See also Figures S8 and S9.
PLATO-based spatial proteomics of humanbreast cancer
To demonstrate the applicability of PLATO in clinical research,

we applied it to the spatial analysis of human breast cancer tis-

sues. Breast cancer, one of the most prevalent cancers in

women, presents significant public health challenges39 because

of its marked heterogeneity, which leads to varied clinical out-

comes. Subtype-specific treatment strategies are therefore

crucial.40 PLATO shows great potential in deciphering this het-

erogeneity in both fresh frozen (Figure 6) and formalin-fixed

paraffin-embedded (Figure S8) samples.

We profiled the tumor’s spatial proteome using a fresh frozen

breast cancer sample from a 77-year-old female patient diag-

nosed with HER2+, ER 70%, PR�. Using a microfluidic chip

with 70 parallel channels, each 25 mm wide, PLATO identified

approximately 4,000 protein groups per channel from two angles

(Figures 6A and S9A). Clustering analysis revealed three distinct

spatial clusters: two tumor regions and one adjacent region (Fig-

ure 6B), which aligned well with pathologist annotations (Fig-

ure S9B). To validate PLATO, we performed LCM-proteome

analysis on an adjacent tissue slice, collecting 145 tissue voxels

(�100 3 100 3 10 mm) from the identified clusters (Figures 6C,

S9C, and S9D). On average, 3,500 proteins per voxel were found

in tumor regions, significantly more than in adjacent areas (Fig-

ure S9E). A high Spearman correlation was observed between

PLATO and LCM results across all regions (tumor 1: 0.82, tumor

2: 0.85, adjacent: 0.81) (Figure 6D), and similarly strong correla-

tions were found at region boundaries (adjacent and tumor 1:

0.80, adjacent and tumor 2: 0.81) (Figure S9F). Pixel-level com-

parisons further confirmed PLATO’s accuracy (Figure S9G). IF

staining also validated the spatial distribution of four representa-

tive proteins in PLATO (Figure 6E).

Next, we examined the spatial distribution of breast cancer

classification markers, including HER2/ERBB2, ER/ESR1, and

PR,39 in the PLATO results. Two tumor subtypes were identified:

tumor 1 (HER2+, ER�, PR�) and tumor 2 (HER2+, ER+, PR�)

(Figure 6F). These findings were validated through LCM-prote-

ome analysis (Figure 6F), showing greater precision than the clin-

ical diagnosis (HER2+, ER 70%, PR�), as PLATO revealed that

the 70% ER expression was a composite of the two subtypes.
ubjected to PLATO, laser capturemicrodissection (LCM)-based proteome, and

the LCM sampling area. Colored lines represent the pathological annotations.

ctions. Each anatomical region is represented by all samples from the region.

ed and normalized using the normalizeBetweenArrays function from the limma

proteome.

estrogen receptor 1 (ESR1) by PLATO. Right, the spatial distribution of ERBB2

or subtypes.

. Each node represents a protein, and the node size represents the degree of

roteins across the two tumor subtypes. Pathway significance was determined

sponse late gene set enrichment score, which was visualized by RidgeSpace

ach gene set.
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Additionally, proteins associated with the PAM50 subtypes were

differentially expressed between tumor 1 and tumor 2, confirm-

ing their distinct characteristics41,42 (Figure 6G). The PLATO

reconstruction of ERBB2 provided a more comprehensive view

than the LCM results, suggesting a potential heterogeneity within

tumor 1. We then explored the DEPs between these subtypes to

understand the tumor microenvironment’s heterogeneity (Fig-

ure 6H). Tumor 1 was enriched in extracellular matrix (ECM) pro-

teins, such as fibulin-5 (FBLN5), filamin-A (FLNA), fibronectin

(FN1), elastin (ELN), and ladinin-1 (LAD1), suggesting a more

aggressive tumor phenotype.43 In contrast, tumor 2 was en-

riched in hormone signaling-related proteins like estrogen recep-

tor 1 (ESR1), a clinical biomarker for breast cancer, and mucin 1

(MUC1), which stabilizes and activates estrogen receptor,44

highlighting its distinct biology and relationship with estrogen

signaling.

To further investigate the functional roles of these DEPs, we

constructed protein-protein interaction networks (Figure 6I).

FN1, which was reported to play a crucial role in the

mammary mesenchymal compartment during breast cancer

development,45 was identified as a key protein in tumor 1, while

ESR1 and BCL2 were central in tumor 2, the latter being linked

to estrogen receptor-positive tumors.46 Pathway enrichment

analysis revealed epithelial-to-mesenchymal transition (EMT)

activity in tumor 1, suggesting a more aggressive phenotype,

while estrogen response pathways were predominant in tumor

2 (Figures 6J and 6K). Both tumors exhibited enrichment in xeno-

biotic metabolism pathways, potentially contributing to drug

resistance in breast cancer.47 Collectively, PLATO effectively

identifies spatially distinct tumor subtypes, highlights key dysre-

gulated proteins, and provides insights into the complexity of the

tumor microenvironment.

DISCUSSION

With the development of LCM-based methods and the improve-

ment of sensitivity of MS, several remarkable methodologies

have been developed that allow for spatially resolved proteomic

profiling of tissue sections.13,15 Although these techniques

exhibit specific advantages in resolution and applicability, they

share a major caveat in the limited tissue areas and sampling

throughput. For example, a recent study developed the nano-

POTS approach,13 which successfully obtained >2,000 proteins

with 100 mm spatial resolution from mouse uterine tissue, but it

was only applicable to an extremely small tissue region contain-

ing 24 data points.13 Likewise, the DVP15 strategy employs an

artificial intelligence-driven LMD technique to perform spatially

resolved proteomics profiling at single-cell or subcellular levels.

However, it is difficult to construct protein maps on the whole-

tissue level. The MASP17 method successfully improves the

detection scale to whole-tissue level, based on spatially resolved

micro-compartmentalization of tissue using a 3D-printed micro-

scaffold, but it requires a large number of measurements and is

of low resolution. For example, 900 LC-MS/MS measurements

for mouse brain tissue at a spatial resolution of 400 mm are

needed. Overall, without mention of sample degradation and

batch effects during large-scale experiments, it is evident that

these methods are prohibitively time consuming, labor intensive,
12 Cell 188, 1–15, February 6, 2025
and expensive. In contrast to previous methods, our approach is

a fundamentally different method compatible with the easily

obtainable LC-MS/MS measurements and can be set up with

high throughput and a large field of view. For example, in this

study, we obtained approximately 3,000 protein groups from

adult mouse cerebellum, with only �60 MS measurements. In

addition to its independence from specialized laboratory facil-

ities, the PLATO framework shows several significant advan-

tages, including the following: (1) it is versatile and easy to oper-

ate with a simple PDMS slab clamped on the tissue slide, without

sophisticated fluidic handling, and thus can be readily adopted

by researchers who have no training in microfluidics; (2) high

spatial resolution (e.g., 25 mm) can be achieved by requiring

only a few parallel sampling projections; and (3) whole-tissue

mapping capacity (e.g., several thousand spots) enables a

comprehensive survey of region-to-region variations. Therefore,

we believe that this method will remarkably facilitate efforts to-

ward understanding the spatially organized translational regula-

tion responsible for biological mechanisms.

An important computational challenge of the PLATO frame-

work is how to recover spatial patterns from parallel-flow projec-

tions. State-of-the-art methods to address this challenge are

based on computer tomography,19,20 which takes the measure-

ments obtained from each microchannel as an analog of a paral-

lel-beam sum projection. Although advances in this approach

significantly reduce the number of measurements by one

order of magnitude, compared with the spot-by-spot sampling

approach,18 at least five slices are needed to implement the pro-

tocol, which ignores the heterogeneity of different slices and re-

quires a large number of measurements (e.g., �700 strips for ST

reconstruction of mouse brain). More critically, these methods

showed low resolution and an inability to discover discontin-

uous, checkerboard-like patterns.18,48 In contrast, the PLATO

framework utilizes a transfer learning-based algorithm to

address this challenge. By training the model using images

that provide spatial patterns of the middle slice, we build con-

nections between microchannels and their spatial expression.

The trained model restores the spatial patterns of detected pro-

teins, based on the measurements from microfluidic chip exper-

iments. By employing this strategy, Flow2Spatial remarkably re-

duces the number of slices to three and measurements to less

than 100, and this number is at least one order of magnitude

less than that of previous approaches. Advantages resulting

from the reduction of MS measurements include (1) reducing

heterogeneity introduced by consecutive slices, especially for

complex tissues such as the brain, and (2) saving time and costs

for sample preparation andmeasurement; in particular, the latter

is essential for spatial proteomics in situations in which no effi-

cient protein barcoding technology is available. We believe this

method will pave the way for achieving spatial resolution in a

wide range of molecular detection techniques.

Limitations of the study
While PLATO represents a pioneering advancement in whole-tis-

sue proteomic imaging that offers remarkable proteome depth,

several areas for improvement remain. First, although the current

version utilizes microfluidic channels as narrow as 25 mm, it does

not yet achieve single-cell resolution. Enhancing PLATO’s
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resolution could be accomplished by using higher-precision mi-

crofluidic channels, potentially as narrow as 10 mm, which would

bring it closer to single-cell imaging. Alternatively, integrating de-

convolution algorithms that align cell-type information from

spatial transcriptomics could help resolve cellular composition

at each spot. Second, further applications of PLATO would

benefit from incorporating faster and more reliable MS. A more

rapid instrument could enable PLATO to serve as a routine clin-

ical diagnostic tool, capable of delivering results in less than 24 h.

Improving the instrument’s reliability would reduce random fluc-

tuations in the MS signal, enhancing the overall accuracy of the

measurements. Third, while the current PLATO framework fo-

cuses on protein profiling, it does not yet capture protein

PTMs. Given LC-MS/MS’s potential for PTM detection, PLATO

could be expanded to include PTM analysis by incorporating

additional enrichment steps, such as affinity capture or covalent

coupling,49,50 into the microfluidic workflow.

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed

to and will be fulfilled by the lead contact, Dr. Fangqing Zhao (zhfq@ioz.ac.cn).

Materials availability

This study did not generate new unique reagents.

Data and code availability

The mass spectrometry proteomics data have been deposited to the

ProteomeXchange Consortium (http://proteomecentral.proteomexchange.org)

via the iProX partner repository51,52 with the dataset identifier PXD045687. The

MAGIC-seq sequencing data of mouse cerebellum are available from the

GenomeSequenceArchive (GSA) in the National Genomics DataCenter, Beijing

Institute of Genomics (China National Center for Bioinformation), Chinese Acad-

emy of Sciences under the accession code PRJCA032225. In detail, the raw

sequencing data have been deposited under the accession code CRA020331.

The Slide-seq dataset of mouse cerebellum was obtained from https://

singlecell.broadinstitute.org/single_cell/study/SCP815/.37 The source code for

Flow2Spatial is available at https://github.com/bioinfo-biols/Flow2Spatial.

ACKNOWLEDGMENTS

This work was supported by grants from the National Natural Science Founda-

tion of China (32025009, 32130020, 32400533, and 32300538) and National

Key R&D Project (2022YFA1303900, 2021YFA1300500, 2022YFC2703200,

and 2024YFF1206600), Natural Science Foundation of Beijing (Z230007), Bei-

jing Hospitals Authority Clinical Medicine Development of Special Funding

Support (ZLRK202327), and the Postdoctoral Innovation Talent Support Pro-

gram (BX20240367). We would like to thank Dr. Wenbin Du (Institute of Micro-

biology, Chinese Academy of Sciences) for valuable advice on designing mi-

crofluidic device and for sharing the soft lithography facilities.

AUTHOR CONTRIBUTIONS

F.Z. and P.J. conceived the study. F.Z., B.H., and P.J. designed the microflui-

dic chip-based experimental workflow. R.H. and F.Z. designed the

Flow2Spatial algorithm. B.H., G.W., N.W., T.L., J.Z., Z.J., Y.H., and Z.Z. per-

formed the experiments and generated the data. K.P., J.Z., P.J., and F.Z.

analyzed the data. P.J., B.H., R.H., and F.Z. wrote the manuscript.

DECLARATION OF INTERESTS

The authors declare no competing interests.
STAR+METHODS

Detailed methods are provided in the online version of this paper and include

the following:

d KEY RESOURCES TABLE

d EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS
B Animals

B Human samples

d METHOD DETAILS

B Tissue handling

B Microfluidic device fabrication

B Proteomics sample preparation of PLATO

B Spatial transcriptomics with MAGIC-seq

B Proteomics of laser capture microdissection

B Imaging mass spectrometry of metabolites

B Immunofluorescence staining

B LC-MS/MS

B Optimization of chip-based proteomics

B Cross-contamination between microchannels

B PLATO for mouse cerebellum

B PLATO for intestinal villus

B PLATO for human breast cancer

d QUANTIFICATION AND STATISTICAL ANALYSIS

B Overview of the Flow2Spatial algorithm

B Training dataset generator in Flow2Spatial

B Deep learning model of Flow2Spatial

B Proteomic data processing

B Filtering and normalization of the proteomic data

B MALDI-imaging MS data analysis

B Processing of MAGIC-seq raw data

B Filtering and normalization of ST data

B Dimension reduction, clustering, and marker identification

B Enrichment analysis

d ADDITIONAL RESOURCES

B Abbreviations

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.cell.

2024.12.023.

Received: June 27, 2024

Revised: October 12, 2024

Accepted: December 17, 2024

Published: January 23, 2025

REFERENCES

1. Han, X., Wang, R., Zhou, Y., Fei, L., Sun, H., Lai, S., Saadatpour, A., Zhou,

Z., Chen, H., Ye, F., et al. (2018). Mapping the Mouse Cell Atlas by Micro-

well-Seq. Cell 173, 1307. https://doi.org/10.1016/j.cell.2018.05.012.

2. Liu, Y., Yang, M., Deng, Y., Su, G., Enninful, A., Guo, C.C., Tebaldi, T.,

Zhang, D., Kim, D., Bai, Z., et al. (2020). High-Spatial-Resolution Multi-

Omics Sequencing via Deterministic Barcoding in Tissue. Cell 183,

1665–1681.e18. https://doi.org/10.1016/j.cell.2020.10.026.

3. Rodriques, S.G., Stickels, R.R., Goeva, A., Martin, C.A., Murray, E., Van-

derburg, C.R., Welch, J., Chen, L.M., Chen, F., and Macosko, E.Z.

(2019). Slide-seq: A scalable technology for measuring genome-wide

expression at high spatial resolution. Science 363, 1463–1467. https://

doi.org/10.1126/science.aaw1219.

4. Eng, C.L., Lawson, M., Zhu, Q., Dries, R., Koulena, N., Takei, Y., Yun, J.,

Cronin, C., Karp, C., Yuan, G.C., and Cai, L. (2019). Transcriptome-scale

super-resolved imaging in tissues by RNA seqFISH. Nature 568,

235–239. https://doi.org/10.1038/s41586-019-1049-y.

5. Liu, Y., DiStasio, M., Su, G., Asashima, H., Enninful, A., Qin, X., Deng, Y.,

Nam, J., Gao, F., Bordignon, P., et al. (2023). High-plex protein and whole
Cell 188, 1–15, February 6, 2025 13

mailto:zhfq@ioz.ac.cn
http://proteomecentral.proteomexchange.org
https://singlecell.broadinstitute.org/single_cell/study/SCP815/
https://singlecell.broadinstitute.org/single_cell/study/SCP815/
https://github.com/bioinfo-biols/Flow2Spatial
https://doi.org/10.1016/j.cell.2024.12.023
https://doi.org/10.1016/j.cell.2024.12.023
https://doi.org/10.1016/j.cell.2018.05.012
https://doi.org/10.1016/j.cell.2020.10.026
https://doi.org/10.1126/science.aaw1219
https://doi.org/10.1126/science.aaw1219
https://doi.org/10.1038/s41586-019-1049-y


ll
OPEN ACCESS

Please cite this article in press as: Hu et al., High-resolution spatially resolved proteomics of complex tissues based on microfluidics and trans-
fer learning, Cell (2025), https://doi.org/10.1016/j.cell.2024.12.023

Article
transcriptome co-mapping at cellular resolution with spatial CITE-seq.

Nat. Biotechnol. 41, 1405–1409. https://doi.org/10.1038/s41587-023-

01676-0.

6. Hickey, J.W., Neumann, E.K., Radtke, A.J., Camarillo, J.M., Beuschel,

R.T., Albanese, A., McDonough, E., Hatler, J., Wiblin, A.E., Fisher, J.,

et al. (2022). Spatial mapping of protein composition and tissue organiza-

tion: a primer for multiplexed antibody-based imaging. Nat. Methods 19,

284–295. https://doi.org/10.1038/s41592-021-01316-y.

7. Giesen, C., Wang, H.A.O., Schapiro, D., Zivanovic, N., Jacobs, A., Hatten-
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Anti-DAGLA rabbit polyclonal antibody Sangon Biotech Cat#D163668; RRID: AB_3661757

Anti-GAP43 rabbit polyclonal antibody Sangon Biotech Cat#D163002; RRID: AB_3661758

Anti-GRM1 rabbit polyclonal antibody Sangon Biotech Cat#D260458; RRID: AB_3661759

Anti-SETD7 rabbit polyclonal antibody Sangon Biotech Cat#D222485; RRID: AB_3661806

Anti-HMGN2 rabbit polyclonal antibody Sangon Biotech Cat#D225187; RRID: AB_3661760

Anti-FUBP1 rabbit polyclonal antibody Sangon Biotech Cat#D163947; RRID: AB_3661807

Anti-ZNF207 rabbit polyclonal antibody Sangon Biotech Cat#D124006; RRID: AB_3661808

Anti-FUS rabbit polyclonal antibody Sangon Biotech Cat#D123360; RRID: AB_3661809

Anti-HSP90B1 rabbit polyclonal antibody Sangon Biotech Cat#D220724; RRID: AB_3661810

Anti-TTR rabbit polyclonal antibody Sangon Biotech Cat#D120267; RRID: AB_3661811

Anti-CLIC6 rabbit polyclonal antibody Sangon Biotech Cat#D263475; RRID: AB_3661812

Anti-ACE rabbit polyclonal antibody Sangon Biotech Cat#D260020; RRID: AB_3661813

Anti-PDIA3 rabbit polyclonal antibody Beijing Solarbio Science & Technology Cat# K002098P; RRID: AB_3661619

Anti-DCN rabbit polyclonal antibody Beijing Solarbio Science & Technology Cat#K002913P; RRID: AB_3661620

Anti-MYH11 rabbit polyclonal antibody Beijing Solarbio Science & Technology Cat#K002095P; RRID: AB_3661621

Anti-AGR3 rabbit polyclonal antibody ProteinTech Group Cat#11967-1-AP; RRID: AB_2877809

Anti-AGR2 rabbit polyclonal antibody ProteinTech Group Cat# 12275-1-AP; RRID: AB_2225096

Anti-ATP1A1 rabbit polyclonal antibody ProteinTech Group Cat#14418-1-AP; RRID: AB_2227873

Alexa Fluor 488 anti-rabbit secondary antibody Invitrogen Cat#A-21206; RRID: AB_2535792

Alexa Fluor 555 anti-rabbit secondary antibody Invitrogen Cat# A-31572; RRID: AB_162543

Biological samples

C57BL/6 Adult mouse Beijing Vitalstar Biotechnology N/A

Sprague‒Dawley male rats Beijing Vital River Laboratory Animal

Technology

N/A

Human breast cancer Peking University Cancer Hospital N/A

Chemicals, peptides, and recombinant proteins

4-hexylphenylazosulfonate Sigma-Aldrich Cat#919233-100ML

n-dodecl-ß-D-maltoside Sigma-Aldrich Cat#D4641-500MG

Iodoacetamide Sigma-Aldrich Cat#l1149-5G

Dithiothreitol Sigma-Aldrich Cat#D0632-1G

iRT Standard Biognosys Cat#Ki-3002-1

Trypsin Gold Promega Cat#V5280

dextran sodium sulfate MP Biomedicals Cat#160110

Cryo-Gel Leica Cat#39475237

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

Maxima H Minus Reverse Transcriptase

(200 U/L)

Thermo Fisher Scientific Cat#EP0751

dNTP mix New England Biolabs Cat#N0447L

RNase Inhibitor Enzymatics Cat#Y9240L

Kapa Hotstart HiFi ReadyMix Kapa Biosystems Cat#KK2602

Bst 2.0 WarmStart DNA polymerase New England Biolabs Cat#M0538L

Critical commercial assays

Qubit dsDNA HS Assay Kit Invitrogen Cat#Q33230

NEBNext Ultra II FS DNA Library Prep Kit for

Illumina

New England Biolabs Cat#E7805S

H&E staining kit Beijing Solarbio Science & Technology Cat#G1120

Micro BCA� Protein Assay Kit Thermo Fisher Scientific Cat#23235

Deposited data

Mass spectrometry raw data This paper http://proteomecentral.proteomexchange.org;

PXD045687;

Mouse cerebellum spatial transcriptomics data This paper GSA: CRA020331

Slide-seq mouse cerebellum data Cable et al.37 https://singlecell.broadinstitute.org/single_cell/

study/SCP815/

Software and algorithms

Spectronaut v.15.2.210819 Biognosys https://biognosys.com/software/spectronaut/

Leica Laser Microdissection software

v 8.2.0.6739

Leica Microsystems https://www.leica-microsystems.com/products/

microscope-software/p/leica-lmd-software/

SCiLS Lab v2021b Bruker Daltonics https://www.bruker.com/en/products-and-

solutions/mass-spectrometry/ms-software/

scils-lab.html

DIA-NN v1.8.1 Demichev et al.53 https://github.com/vdemichev/DiaNN

Qupath v 0.5.1 Bankhead et al.54 https://qupath.github.io/

RidgeSpace N/A https://github.com/bioinfo-biols/RidgeSpace

Gseapy v 0.10.1 Fang et al.55 https://gseapy.readthedocs.io/en/latest/

index.html

Scanpy v1.9.3 Wolf et al.56 https://scanpy.readthedocs.io/en/stable/

STAR v2.7.10b Kaminow et al.57 https://github.com/alexdobin/STAR/tree/master

seqkit v2.0.0 Shen et al.58 https://bioinf.shenwei.me/seqkit/

pyimzML N/A https://pyimzml.readthedocs.io/en/latest/
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Animals
All mice used in this work were C57BL/6. Specifically, the wild-type mouse and the expressed red fluorescent protein of tdTOMATO

was purchased fromBeijing Vitalstar Biotechnology Corporation (Beijing, China). Sprague‒Dawleymale rats aged 8weekswere pur-

chased from Beijing Vital River Laboratory Animal Technology Corporation (Beijing, China). All animal experiments were conducted

according to the National Institute of Health Guide for the Care and Use of Laboratory Animals. All procedures were approved by the

Animal Ethics Committee at the Institute of Zoology, Chinese Academy of Sciences.

Human samples
The breast cancer sample was collected from a 77-year-old female patient of Han Chinese ethnicity, with clinical information ob-

tained through informed consent under a protocol approved by the Ethics Committee of Beijing Cancer Hospital. Approximately

3 mm tissue blocks were excised from the sample using a biopsy punch. Some of these tissue punches were snap frozen in

Cryo-Gel (Leica, the Netherlands) as embedding medium and stored at -80 �C, labeled as fresh frozen samples. The remaining

punches were processed into formalin-fixed paraffin-embedded (FFPE) blocks. Specifically, the punched tissue was fixed in 10%
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formalin for 48 hours, followed by sequential dehydration in methanol and isopropanol. The dehydrated tissues were then transferred

into embedding cassettes and infiltrated with paraffin wax to create the FFPE blocks.

METHOD DETAILS

Tissue handling
For the frozen tissue, it was equilibrated to -18 �C in a cryostat (Leica CM3050S) for 30 minutes. Then, the tissue was cut into 10-mm-

thick consecutive sections, and three consecutive sections were collected. The first tissue section was placed on the center of the

chip glass slide at a predefined angle. The chip glass slide was a custom-designed glass slide with dimensions of 863 483 1.5 mm.

The second tissue section was placed on a poly-L-lysine-coated glass slide (Citotest, China) for histological staining, an indium tin

oxide (ITO)-coated glass slide (Bruker Daltonics, USA) for imaging mass spectrometry (IMS), or ST glass slide (MAGIC seq) for spatial

transcriptomics.59 The third tissue was placed on the center of the chip glass slide at an angle perpendicular to the first tissue section.

Finally, bright field full images were obtained for tissues using a spinning disk confocal microscope (Olympus, SpinSR), and tissue

sections were stored at -80 �C prior to use.

Microfluidic device fabrication
The microfluidic chip mold was fabricated by CapitalBio Corporation (Beijing, China) using standard soft lithography with SU-8

photoresist. The following types of microfluidic chips were produced: (i) channels 100 mm wide and approximately 100 mm high,

(ii) channels 50 mm wide and approximately 60 mm high, and (iii) channels 25 mm wide and approximately 30 mm high. Polydimethyl-

siloxane (PDMS) (Dow Corning, USA) in a 9:1 (w/w) ratio was poured onto the mold and cured at 65 �C for 5 hours. After curing, the

PDMS slab was peeled off, and holes were punched for all inlets and outlets. The inlet and outlet diameters ranged from 2.8 to

3.5 mm, each capable of holding 20 to 40 mL of liquid.

Proteomics sample preparation of PLATO
In this experiment, two adjacent tissue sections were used, oriented perpendicularly to each other. Both sections were processed

simultaneously for protein sample preparation to avoid batch effects. Two fabricated PDMS slabs were attached to the tissue section

slides, and a homemade acrylic clamp was used to reversibly seal the microfluidic chip. After device assembly, a bright field full im-

age was scanned to record the relative positions of the channels and tissue using a spinning disk confocal microscope (Olympus

SpinSR, Japan). Following imaging, 12 mL of lysis buffer was added to each inlet. The lysis buffer contained 25 ng/mL trypsin (Prom-

ega, USA), 0.56% iRT standard (Biognosys, Switzerland), and 0.1% n-dodecyl-b-D-maltoside (DDM, Sigma-Aldrich) in 50 mM

ammonium bicarbonate (ABC) solution. A global cover connected to a house vacuum was placed over the outlets to draw the buffer

from the inlets through the tissue surface to the outlets, maintaining a vacuum pressure of 0.03MPa for approximately 2minutes. The

chip was then placed in a wet box and incubated at 37 �C for 30minutes. The lysis buffer was again pulled through the channels using

the vacuum pump at 0.03MPa for another 2minutes and incubated at 37 �C for an additional 30minutes. After incubation, all the lysis

buffer was collected from the chip outlets and transferred to corresponding Eppendorf tubes. The tubes were then incubated at 37 �C
for 4 hours to complete protein digestion. Following digestion, each sample was individually quantified by LC‒MS/MS.

Spatial transcriptomics with MAGIC-seq
Spatial transcriptomics was performed using MAGIC-seq as previously described.59 Two microfluidic chips (A and B), each with

32 mm-wide channels, were used. The channels of chip A were oriented perpendicularly to those of chip B. Initially, chip A was

attached to a carboxyl-modified glass slide and sealed with an acrylic clamp. Barcode A solutions (A1–A70, 40 mM) were prepared

in 0.1 M MES buffer (Coolaber, SL33002X) containing N-(3-dimethylaminopropyl)-N0-ethylcarbodiimide hydrochloride (EDC; TCI,

D1601) and N-hydroxysuccinimide (NHS; Thermo Fisher Scientific, 24500). Each inlet of the chip received 5 mL of Barcode A solution,

which was pulled into the channels to react with the carboxyl groups. After the reaction, the glass slide was washed with blocking

buffer, 2X SSC buffer, and distilled water. Next, 5 mL of ligation mix was added to the inlets of chip B and pulled into the channels for a

2-hour reaction. The ligation mix consisted of 25 mM barcode B (B1–B70, 20 mM), 5 mMCy3-labeled linker, 0.2 mg/mL BSA, 20 U/mL

T4DNA ligase (NEB,M0202L). After the reaction, the glass slide waswashed and scanned using a spinning disk confocal microscope

(Olympus SpinSR, Japan).

After the fabrication of the DNA array, a tissue section was placed onto the array. The section was stained with H&E (Solarbio,

G1120) and scanned using the spinning disk confocal microscope (Olympus SpinSR, Japan). Tissue permeabilization was carried

out for 12 minutes using 70 mL of permeabilization solution (0.1% pepsin in 0.1 N HCl). Next, a 90-minute reverse transcription

(RT) was performed with 70 mL of RT mix, containing 1 mM dNTP (NEB, N0447L), 13 RT buffer, 2.5 mM template switch oligos,

2 U/mL RNase inhibitor (Enzymatics, Y9240L), 0.2 mg/mL BSA, 10 U/mL Maxima H minus reverse transcriptase (Thermo Fisher Sci-

entific, EP0751). Following reverse transcription, the tissue was removed, and second-strand synthesis was conducted. The result-

ing DNA was amplified by PCR (KAPA Biosystems, KK2602), and approximately 100 ng of DNA was used for sequencing library

construction using the NEBNext Ultra II FS DNA Library Prep Kit for Illumina (NEB, E7805S). The libraries were sequenced using

the Element AVITI platform (Element Biosciences) in PE150 mode.
e3 Cell 188, 1–15.e1–e8, February 6, 2025



ll
OPEN ACCESS

Please cite this article in press as: Hu et al., High-resolution spatially resolved proteomics of complex tissues based on microfluidics and trans-
fer learning, Cell (2025), https://doi.org/10.1016/j.cell.2024.12.023

Article
Proteomics of laser capture microdissection
Tissue section was placed on a membrane-coated glass slide (4.0 mm, PEN-membrane, Leica) for LCM-proteome. Before microdis-

section, the entire tissue section image was captured using a spinning disk confocal microscope (Olympus SpinSR, Japan) and im-

ported into Qupath version 0.5.1.54 Regions of interest (ROIs) were manually created as �1003100 mm square areas, and reference

points were set for alignment with laser capture microdissection. The ROIs were exported in GeoJSON format and converted to.XML

format.60 The Leica LMD7 system was then used to excise the �1003100 mm tissue voxels, with the following cutting settings:

Power 39, aperture 4, speed 3, head current 75%, and pulse frequency 660. Each dissected voxel was collected into the cap of a

0.5 mL Eppendorf tube. The tubes were centrifuged at 8,000 rcf for 5 minutes to collect the tissue at the bottom. Afterward, 7 mL

of 50mMABCbuffer was added to each tube, followed by sonication for 10minutes. Trypsin (30 ng/tube) was then added, and diges-

tion was performed at 37 �C for 5 hours. Following digestion, the tissue lysate was analyzed using LC-MS/MS. Samples with

significantly fewer detected proteins compared to the average were excluded from further analysis.

Imaging mass spectrometry of metabolites
Tissue sections were placed on an ITO-coated glass slide (Bruker, Germany) for metabolomics MALDI-MSI analysis. The procedure

was as follows: (i) The matrix solution was freshly prepared by dissolving 1,5-Diaminonaphthalene (1,5-DAN, 5 mg/mL) in a 70:30

ethanol/water (v/v) mixture. (ii) An automated pneumatic sprayer (HTX Technologies, USA) was used to evenly spray 5mL of the heat-

ed matrix solution onto the tissue sections. (iii) Metabolite imaging was performed using a Fourier transform ion cyclotron resonance

(FT-ICR) mass spectrometer (Bruker Daltonics, Germany), with sodium trifluoroacetate used for mass spectrometry calibration. Data

collection was conducted in negative ion mode with the following MALDI imaging parameters: laser focus set to small, laser power at

85%, raster size of 50350 mm, and a collection window ranging from m/z 100 to 1200. The imaging process was managed using

FlexImaging 6.0 software (Bruker Daltonics).

Immunofluorescence staining
Immunofluorescence staining was performed on an adjacent slide to generate validation data. The primary antibodies were obtained

from several sources, including ABclonal Technology Co., Ltd., with anti-rabbit antibodies against MBP, MOG, NEFL, CNP, SYN1,

NEUN, MAOA, and ALB. Additional primary antibodies were sourced from Sangon Biotech (Shanghai) Co., Ltd., targeting CLDN11,

DAGLA, GAP43, GRM1, SETD7, HMGN2, FUBP1, ZNF207, FUS, HSP90B1, TTR, and CLIC6. Primary antibodies from Beijing Solar-

bio Science & Technology Co., Ltd. included PDIA3, DCN, and MYH11. Other antibodies such as AGR3, AGR2 and ATP1A1 were

obtained from Proteintech (USA). Visualization was achieved using Alexa Fluor 488 and Alexa Fluor 555 anti-rabbit secondary anti-

bodies (Invitrogen, USA).

For fresh frozen tissue sections, they were fixed in 4% formaldehyde for 20minutes, followed by three washes with PBS containing

0.3% Triton X-100. The tissue was then blocked with 1% bovine serum albumin (BSA) in PBS for 60 minutes at room temperature

(RT). After blocking, the tissue was washed three times with PBS. The primary antibody, diluted in PBS, was applied to the tissue

and incubated overnight at 4 �C, followed by three additional washes with PBS. After this, the secondary antibody was added

and incubated for 2 hours at RT. The tissue was washed again three times with PBS, with each wash lasting 5 minutes. Imaging

was performed using a spinning disk confocal microscope (Olympus SpinSR, Japan).

For formalin-fixed, paraffin-embedded (FFPE) sections, they were deparaffinized with xylene for 23 10minutes. The sectionswere

then rehydrated through a graded ethanol series: 100%, 95%, 90%, 80%, 70%, followed by rinsing in distilled water. Antigen retrieval

was performed by boiling the sections in sodium citrate antigen retrieval buffer (pH 6.0) for 10 minutes, followed by natural cooling to

room temperature. The sections were blocked with 1%BSA in PBS for 60 minutes at room temperature (RT). After blocking, the sec-

tions were washed three times with PBS. The primary antibody, diluted in PBS, was applied to the tissue and incubated overnight at

4 �C, followed by three additional washes with PBS. After this, the secondary antibody was added and incubated for 2 hours at RT.

The tissue was washed again three times with PBS, with each wash lasting 5 minutes. Imaging was performed using a spinning disk

confocal microscope (Olympus SpinSR, Japan).

LC-MS/MS
The digested samples were directly injected into a C18 analysis column (75 mm I.D.3 20 cm, 1.9 mm, 120 Å, Dr. Maisch GmbH) using

an EASY-nLC 1200 system (Thermo Scientific) with 12 mL A solution (0.1% formic acid, FA) at a maximum pressure of 400 bar. The

separation gradient was set as follows: 0-2 minutes, 6-12% mobile phase B (80% acetonitrile, 0.1% FA); 2-18 minutes, 12-30% B;

18-22 minutes, 30-42% B solution; and 95% B solution within 4 minutes. A Q Exactive HF mass spectrometer (Thermo Scientific,

USA) was used for data-independent acquisition (DIA) analysis. The full scan was set at a resolution of 120,000 at a range of 398

to 1202 m/z; the DIA scan parameter was set with a resolution of 30,000; NCE: 28%; AGC target: 3e6 and maximal injection time:

100 ms. There were three MS1 scans and 27 DIA windows per cycle.

Optimization of chip-based proteomics
In this experiment, a microfluidic chip containing 48 parallel channels with a 100 mm channel width was used. The mouse brain tissue

of C57BL/6J was used in this experiment. Three extremely small amounts of protein preparation pipeline were tested, including

4-hexylphenylazosulfonate (AZO, Sigma, USA)-based pipeline, n-dodecl-ß-D-maltoside (DDM, Sigma, USA)-based pipeline, and
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the pipeline of direct lysis with trypsin. For the surfactant-based pipeline, 20 mL lysis solution containing 50 mM ammonium bicar-

bonate, 10 mM dithiothreitol (DTT, Sigma, USA), and surfactant (0.1% AZO or 0.2% DDM) was added to each inlet of the chip.

The lysis solutionwas further pulled intomicrochannels, and the chipwas placed in a humid chamber at 60 �C for 1 hour to lyse tissue.

Then, all lysis solution was pulled to the chip outlet and transferred to a 0.5mL Eppendorf low-binding tube. Next, 1 mL iodoacetamide

(IAA, Sigma, USA) solution (300 mM in 50 mM ABC) was added to each tube and incubated in the dark for 30 min at room temper-

ature. Then, 1 mL trypsin (200 ng in 50mMABC) was added to each tube and incubated at 37 �C for 4 hours. Next, the AZO surfactant

was rapidly degraded by exposing AZO-based samples to UV irradiation. For direct trypsin lysis, 20 mL trypsin solution (10 ng/mL in

50 mM ABC) was added to each chip inlet and further pulled into the microchannels. Then, the chip was kept in a humid chamber at

37 �C for 1 hour to lyse tissue. Next, each lysate in the microchannel was transferred to a low-binding tube for another 4 hours of

incubation at 37 �C. Finally, each sample in the Eppendorf tube was quantified by LC‒MS/MS separately. Mice expressing red fluo-

rescence protein (tdTOMATO) were used to assess the ability of tissue digestion in microchannels of direct trypsin lysis. Specifically,

mouse cerebellum sections were directly digested by trypsin in microchannels, and red fluorescence images of tissue sections were

obtained by a confocal microscope before and after tissue lysis.

The following experiment was performed to verify that trypsin adsorbs to the channel when digesting tissue in a microchannel,

thereby reducing nonspecific adsorption of tissue proteins. First, a mouse brain section and 200 mL of 50 mM ABC were collected

into a PCR tube. Next, the tissue was lysed by freezing the tube to -80 �C for 5 min and heating it to -90 �C for 10 min. Next, three

pretreatments to the microchannels were performed separately, including flowing 20 mL BSA (10 ng/mL in 50 mMABC), 20 mL trypsin

(10 ng/mL in 50 mM ABC), or 20 mL ABC (50 mM) into the microchannels. After pretreatment, the solution in the microchannels was

removed. Next, 20 mL of tissue lysate was added into each chip inlet and pulled into the pretreated channels for 1 hour. Next, all so-

lutions in the microchannels were collected into low-binding tubes separately and lysed with trypsin. Finally, four groups were

analyzed with LC‒MS/MS, including BSA, trypsin, ABC-treated microchannels and the original lysate mix.

Cross-contamination between microchannels
The mouse brain tissue of C57BL/6J was used in this experiment. The fluorescent dye propidium iodide (PI, Invitrogen, USA) was

pulled into channels and stained tissue at room temperature for 10 minutes. After staining, the tissue was imaged with confocal mi-

croscopy. Furthermore, cross-contamination was evaluated by LC‒MS/MS. Briefly, we first prepared the E. coli lysate mix by

repeating freezing, thawing, and sonication (-80 �C 5 min, 90 �C 10 min, sonication 5 min). The protein concentration of the E. coli

lysate was quantified by a Micro BCA� Protein Assay Kit (Thermo Scientific, USA). Then, a microfluidics chip (25 mm or 100 mm)

was placed on a brain tissue slide, and three adjacent microchannels were used. Next, 20 mL trypsin solution (10 ng/mL in 50 mM

ABC) was added with 12 ng E. coli protein mix flowing into the middle channel to digest tissue, and 20 mL trypsin solution (10 ng/

mL in 50 mM ABC) without E. coli flowed into the two side channels to digest tissue. After digestion, the tissue lysate was collected

from the channels and detected by LC‒MS/MS.

PLATO for mouse cerebellum
The cerebellum from C57BL/6J mice was snap-frozen using Cryo-Gel as the embedding medium. Five consecutive 10 mm sections

were cryosectioned for PLATO and related experimental validations: Section 1 and Section 3 were placed on the PLATO chip glass

slides with angles of 0� and 90� for PLATO proteomics, respectively. A microfluidic chip with a 50 mm channel width was used in this

experiment and the protein samples were prepared following the PLATO workflow. Section 2 was processed using spatial transcrip-

tomics with a spot size of 32 mm, as described in prior reports.59 Sections 4 was placed on a membrane-coated glass slide (4.0 mm,

PEN-membrane, Leica) for LCM-proteome. Leica LMD7 systemwas used to excise 1003100 mm tissue voxels. Section 5was placed

on an ITO-coated glass slide (Bruker, Germany) for metabolomics MALDI-MSI.

PLATO for intestinal villus
The rat colitis model was induced by dextran sodium sulfate (DSS) (MP Biomedicals, USA) using a previously described protocol.61

Briefly, 5.5% DSS (MW = 36�50 kDa) in water was provided to rats by free drinking for 6�10 days. Meanwhile, a daily record of the

body weight and feces was maintained. The rats were sacrificed when blood in feces was observed for the first time. The middle part

of the colon tissue was snap frozen using Cryo-Gel as an embedding medium. A microfluidic chip with a 25 mm channel width was

used in this experiment. The colon tissue was sectioned laterally to a thickness of 8 mm, and three consecutive sections were

collected. Sections 1 and 3 were placed separately on the PLATO chip glass slides and further processed according to the

PLATO workflow. Section 2 was placed on an ITO-coated glass slide (Bruker, Germany) for MALDI-MSI (matrix-assisted laser

desorption ionization-mass spectrometry imaging).

PLATO for human breast cancer
A microfluidic chip with a 25 mm channel width was used in this experiment. Fresh frozen breast cancer tissue was sectioned to a

thickness of 8 mm, and seven consecutive sections were collected. Sections 1 and 2 were placed separately on chip glass slides

and processed according to the PLATO workflow. Sections 3 was placed on a membrane-coated glass slide (4.0 mm, PEN-mem-

brane, Leica) for LCM-proteome, following the procedure of laser capture microdissection. Sections 9, 10, 11 and 12 were subjected

to immunofluorescence staining according to the fresh frozen tissue staining procedure.
e5 Cell 188, 1–15.e1–e8, February 6, 2025



ll
OPEN ACCESS

Please cite this article in press as: Hu et al., High-resolution spatially resolved proteomics of complex tissues based on microfluidics and trans-
fer learning, Cell (2025), https://doi.org/10.1016/j.cell.2024.12.023

Article
For PLATO-FFPE, serial FFPE tissue sections were cut with a microtome at 8 mm and placed on chip glass slides, membrane-

coated glass slide and poly-L-lysine-coated glass slide. After overnight air dry at room temperature, these slides were heated at

60�C for 20 minutes to ensure better tissue adhesion. The sections were then deparaffinized with xylol, followed by rehydration in

a series of ethanol concentrations: 100%, 95%, 90%, 80%, 70%, and then rinsed in pure water. And section 1 and 2, the cross-links

were reversed by heating at 85 �C in antigen retrieval buffer (sodium citrate, pH 6.0) for 20 minutes, followed by natural cooling to

room temperature and then rinsing in pure water. Microfluidic chips with a 25 mm channel width were then used, and sections

were processed according to the PLATO workflow. After dewax, voxels with volume of 320,000 mm3 were manually excised from

section 3 and collected into the cap of a 0.5 mL Eppendorf tube. Then, the tissue voxel was centrifuged to the bottom of the tube

at a speed of 8,000 rcf for 5 min. Next, each tube was added with 12 mL 50 mM ABC buffer and heated at 95 �C for 20 minutes in

a thermocycler. Then, trypsin (40 ng/tube) was added, and the sample was digested at 37 �C for 5 hours. After digestion, the tissue

lysate was detected by LC-MS/MS. Immunofluorescence staining was performed on the remaining sections according to the FFPE

tissue staining procedure.

QUANTIFICATION AND STATISTICAL ANALYSIS

Overview of the Flow2Spatial algorithm
Our approach is grounded in the well-established notion of the strong correlation of spatial molecular patterns across different omics

data, as supported by previous studies.24–29,33,35 Although mRNA expression is generally weakly associated with its corresponding

protein expression,12,62,63 Flow2Spatial does not rely on one-to-one expression correlations between mRNA and protein. Instead, it

utilizes the distribution features of all mRNAs (clustering features) and orthogonal protein projections to predict protein distributions.

Under this premise, the spatial distribution from one type of omics data can be transferred to infer the spatial patterns of other omics

data. Briefly, Flow2Spatial trains amodel based on the images (signals) of themiddle slice, such as hematoxylin-eosin (H&E) staining,

fluorescence in situ hybridization (ISH), spatial transcriptomics, or spatial metabolomics. It learns the spatial characteristics of each

signal. Based on the trainedmodel that establishes the link between parallel-flow projections and transferred spatial patterns, we can

then reconstruct the spatial distribution of the detected proteins.

The Flow2Spatial procedure for reconstructing a 2D spatial matrix from 1D slitting values goes through the following steps: trans-

ferring and learning. The former step assumes that the spatial patterns of molecules from different omics are highly correlated and

resemble each other (premise). We can leverage one easily accessible spatial omics as a reference and transfer its spatial information

to help solve a new task, herein spatial proteome reconstruction. Grounded in this assumption, Flow2Spatial reconstructs a 2D

spatial matrix with fine structure.

Let us assume the 2D spatial matrix mentioned above as X. We obtain s as the parallel-flow projection of X as follows:

s = Projection ðX;aÞ
where a is the parameter of slicing channels (lines) in themicrofluidics chip. Here, we transfer spatial information from easily acces-

sible omics (Xt) and mimic the parallel-flow projection with a as follows:

st = Projection
�
Xt;a

�

We thus train a deep learningmodel (DNN) by using (st,Xt) as training data and transfer the learned rules to solve the reconstruction

problem (from st to Xt). Based on Assumption, the trained DNN model is the solver from s to reconstruct X.

Training dataset generator in Flow2Spatial
We built three types of training data generators in this study.

The first is termed the spatial-omics generator. This generator transfers easily accessible omics data from the middle slice in the

PLATO framework as training data, including H&E staining, spatial transcriptomics, or spatial metabolomics.

The second one is named the histological information generator, which makes use of histological architecture information. This

generator first splits tissue slices intomultiple segments based on histological staining or spatial omics clustering results. For staining

images, we obtained histological segments based on staining intensity by the Felzenszwalb segmentation algorithm64 or manual

delineation. Then, the generator assumes that the composition and protein expression levels in spots within a certain segment

are highly similar. We thus generate a new spatial dataset Xn to allow for expression levels that are similar for spots within each

segment and uncorrelated between segments as follows:

Xi
p = Rj; if p˛ segmentj
Rj = Randð$Þ; s:t: Rj R0
where Xi is the i-th generated dataset in Xn, and p is a spot in Xi
. Rj is the randomly assigned value for each segment, j represents

the j-th segment, and Randð$Þ is a function that generates random values. Euclidean distance is then used to select the spatial
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distribution inXn that ismost similar to the parallel-flow projections of each detected protein. For proteinm, we sought to findXq inXn

that have the most minimized distance to sm in s by calculating kProjectionðXq;aÞ � smk22.
To further approximate the distribution of spatial proteome, we optimize the sum of the squared differences between the Xt pro-

jection and s with the package cvxpy.65 For protein m, we perform convex optimization to iteratively optimize Xm in Xt as follows:

min kXm � Xqk22+kProjectionðXm;aÞ � smk22
s:t: Xm R0

The resulting converged optimal Xm is the spatial distribution provided by this generator, which is then incorporated into the

training dataset.

The last generator is a random generator, in which we randomly select two generated spatial distributions from either the first or

second generators and randomly add or subtract these chosen distributions as follows:

Xtn =
Xti+Xtj

2

or Xtn = Xti � Xtj where Xtn R 0
where Xtn means the new generated dataset by this randomgener
ator. This generator will iterate until the size of the generated data is

larger than 40,000. Xt yielded from the three generators will be used as the training dataset in a later section.

Deep learning model of Flow2Spatial
The architecture of the Flow2Spatial model mimics an autoencoder. In the encoder part, we simulate the parallel-flow projection pro-

cess to obtain the summation of each pseudostrip from Xt.

st = Encoder
�
Xt;a

�

In the decoder part, we train a deep learning model to reconstruct Xt0 based on the values of pseudostrips as follows:

Xt0 = Decoder
�
st; q

�

where q is the trainable weight in the DNN decoder model. Our go
al is to minimize the L1-loss between Xt and Xt0 based on gradient

descent:

Loss = kXt;Xt0 k1
min Loss

To reduce model complexity, we normalize these 1D pseudostrip values from different molecules with the same average value:

st = st�
�
mean

�
st
�

where st� represents the raw pseudostrip values and st is the no
rmalized values used for the decoder model.

The architecture of the Flow2Spatial decoder consists of a pretrained Residual Network (ResNet) together withmultiple deconvolu-

tional layers. We use ResNet34 to sample spatial structure information from the values of these pseudostrips. After one max pooling

layer, we used three layers of transposed convolution to finally yield the reconstructed 2D matrix.

To train the Flow2Spatial model, the whole generated dataset was randomly split into training and testing data at a proportion of

9:1. Flow2Spatial was implementedwith PyTorch and Python. In this study, Adam optimization with an initial learning rate of 1e-5was

used to update the parameters. By setting the batch size to 32, we trained themodel for 100 epochs on one NVIDIA GPU. The trained

Flow2Spatial decoder model was used for real data reconstruction.

Proteomic data processing
Spectronaut v.15.2.210819 software (Biognosys, Schlieren, Switzerland) was used for identification and quantification with the

DirectDIAmodel. The raw files were searched against the UniProt mouse database (17,090 entries), Rattus database (57,342 entries),

E. coli database (4,595 entries) and iRT peptide sequence using the BGS factory setting. Peptides FDR\ PSMs FDR\ Proteins FDR

were all set as 1%, and the best 3-6 fragments were chosen per peptide. QUANT 2.0 (SN Standard) was set for the protein LFQ

method, and MS1 was set for the quantity MS level. Based on iRT proteins with consistent theoretical abundance, the abundance
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of ontology proteins was corrected and used for reconstruction. For DIA analysis of human breast and mouse cerebellum samples,

the raw files were search in DIA-NN v1.8.1 against the generated library of UniProt human database (20,398 entries), UniProt mouse

database (17,090 entries) and iRT peptide sequence.53 Additional settings were –original-mods, -ms1-isotope-quant, –report-lib-

info, –mass-acc-quant 10.0.

Filtering and normalization of the proteomic data
For Flow2Spatial channel samples, proteins detected in only one angle sample are filtered. Proteins supported by at least 2 peptides

were retained. For Flow2Spatial channel samples, proteins detected in only one angle sample are filtered. For LCMsamples, proteins

present in 30%of the samples are retained and samples were excluded if the number of detected proteins was below 600. Proteins in

QC samples with a coefficient of variation below 30%were filtered. The Flow2Spatial data were converted into AnnData objects us-

ing Scanpy (v1.9.3).56 Abnormal channel data were corrected using neighboring channel information. The protein groups expression

data was subjected to logarithmic transformation for dimension reduction, clustering, and marker identification.

MALDI-imaging MS data analysis
Raw data files were loaded into SCiLS Lab software (v2021b, Bruker Daltonics). Feature selection was performed in the dataset by

using the feature finding algorithm in SCiLS Lab with default parameters. Features detected in only one spot were filtered. Reduced

feature list and spectra quantified by peak area were exported. Feature list and spectra data were than imported in python with

pyimzML package and converted into AnnData objects using Scanpy (v1.9.3)56 for downstream analysis.

Processing of MAGIC-seq raw data
Spatial barcodes and UMI sequences were extract from read1 of the original sequencing data using the seqkit (v2.0.0) tool.58 The

STARsolo (v2.7.10b)57 was then utilized to process the spatial transcriptomic data by aligning to the mouse reference genome

(mm10), obtaining the raw gene expression matrix for spatial transcriptomics. The spatial coordinate sequences were then aligned

to the H&E images based on the chip marker coordinates, finally yielding the gene expression matrix with spatial coordinate infor-

mation for downstream analysis.

Filtering and normalization of ST data
The processed gene expression matrices were converted into AnnData objects using Scanpy (v1.9.3).56 Spots with fewer than 1000

genes and genes expressed in fewer than 10 spots were filtered. The filtered gene expression data were then normalized by total

counts over all genes so that every spot had 10,000 counts after normalization. The normalized expressionmatrix was then subjected

to logarithmic transformation for the identification of spatially variable genes.

Dimension reduction, clustering, and marker identification
Dimensionality reductionwas performed using principal component analysis. A two-dimensional UMAP embeddingwas constructed

from the established top principal components for each spot. Clustering was performed by constructing a shared nearest neighbor

(SNN) graph based on the spatially resolved data using established components and clusters identified through the Louvain66 or Lei-

den67 algorithm. The marker protein groups for each cluster and differential expression for different groups were determined by the

Wilcoxon rank-sum test.

Enrichment analysis
To explore broad signatures of cell-type-specific responses, Gene Ontology (GO) and gene set enrichment analysis were executed

using python implementation of gseapy (v 0.10.1).55 The reference gene setswere obtained from theGeneOntology Resource, Kyoto

Encyclopedia of Genes and Genomes (KEGG), and hallmark gene sets in Human Molecular Signatures Database (MSigDB).

ADDITIONAL RESOURCES

Abbreviations
In the manuscript, HER2/ERBB2 means human epithelial growth factor receptor 2, ER/ESR1 means estrogen receptor, and PR

means progesterone receptor.
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Figure S1. Microfluidics-based parallel sampling to resolve the spatial distribution of proteomic data, related to Figure 1

(A) Picture of microfluidic chip illustrated with food dye, and the AutoCAD designs of microfluidic chips with different channel width (25, 50, 100 mm).

(B) Assessing fluid resistance distribution of channels in different types ofmicrofluidic chips, including equal channel length and unequal channel length chip. Fluid

resistance distribution of channels was inferred by recording the time required for 20 mL of fluid to flow from the inlet to the outlet.

(C) Optimization of the PLATOworkflow for nanogram-scale samples. Specifically, AZO, DDM, and direct-lysis with trypsin were used for on-chip digestion. Then,

the lysates were collected and analyzed by LC-MS/MS. Figure shows the number of detected peptides in each condition.

(D) Evaluation of nonspecific adsorption of the PDMS chip channel surface for protein samples. Lysis: tissue lysate directly detected by LC-MS/MS without

flowing into channels. CK, BSA, and trypsin: before detected by LC-MS/MS, tissue lysate flowing into the channels pretreated by ammoniumbicarbonate solution

(CK), BSA, or trypsin.

(E) Cellular component (CC) enrichment of LC-MS/MS data. The data of histogram obtained from on-chip lysate and bulk proteomic data obtained from whole-

tissue section lysate.

(F) Chips with different channel width including 100, 50, and 25 mmwere used to evaluate the molecular leakage across channels. Specifically, fluorescent dye of

propidium iodide (PI) flows into channels to stain the section of cerebellum.

(G) Evaluation of peptides diffusing across channels by detecting the LC-MS/MS signals of E. coli in adjacent microchannels.
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Figure S2. Correlation evaluation among different spatial omics, related to Figure 3

To assess the concordance across various spatial omics, we obtained a series of consecutive cerebellum sections, each 10 mm thick. One section underwent

histological staining (H&E staining), another was used for spatial metabolome imaging via matrix-assisted laser desorption ionization Fourier-transform ion

cyclotron resonance mass spectrometry imaging (MALDI FT-ICR MSI), and the third section was processed for spatial transcriptomics using MAGIC-seq.

Immunofluorescence (IF) staining was performed to visualize the histological structure of the cerebellum at the protein level. The representative spatial patterns

are shown together with the clustering results from the different spatial omics, including histology, spatial metabolomics, and spatial transcriptomics.
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Figure S3. Step-by-step reconstruction process of PLATO using H&E as a reference, related to Figure 3

Step 1: performing proteomic projections and spatial segmentation. To minimize differences in signal distribution across slices, three consecutive cerebellar

slices were collected for spatial proteome analysis of PLATO. The first and third slices underwent parallel-flow projection using microfluidic chips at 0� and 90�

angles, followed by sensitive LC-MS/MS proteome analysis. The second slice served as a reference for H&E staining. After H&E staining, the H&E image was

segmented using the Felzenszwalb algorithm with manual curation. These segments served as distribution constraints, ensuring uniform expression levels

among pixels within the same segment in subsequent step. Step 2: generating proteome-specific spatial distributions as training dataset. In this step, we aimed to

create a training dataset closely resembling the spatial proteome. To achieve this, we built a data generator capable of producing spatial distributions by learning

the associated proteomic features. Initially, we speculated potential proteome clusters by randomly combining reference segments. For each combination of

segments, we generated multiple spatial distributions by randomly assigning values to individual segments. Then, we selected the generated spatial distribution

that best matched the parallel-flow projections of specific proteins, determined by Euclidean distance. This selected distribution underwent optimization to align

with the proteome parallel-flow projections. After convex iteration, the resulting converged optimal spatial distribution, informed by proteomic data, was then

incorporated into the training dataset. Step 3: training spatial reconstruction model with the training dataset. All spatial data generated served as the training

dataset for our deep learning reconstruction model. We employed an autoencoder-like deep learning architecture to bridge parallel-flow projections with spatial

information. Within the encoder component, we simulated in silico projection for each spatial distribution in the training dataset, replicating the microfluidic chip-

based parallel-flow projection process. Concurrently, within the decoder component, we trained a ResNet-based model to reconstruct spatial distributions from

the proteome parallel-flow projection values. Finally, the trained model embedded all spatial patterns present in the training dataset into a latent space, reflecting

the relationships among the projected values. Step 4: reconstructing spatial protein distributions by the trained model. To faithfully reconstruct the spatial

proteome, the trained decoder was used as the reconstruction model to regenerate the original spatial distributions from the proteome parallel-flow projections.

Here, CLD11 was taken as an example to demonstrate the performance of PLATO.
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Figure S4. Spatial distribution of proteins can be accurately reconstructed by Flow2Spatial, related to Figure 4

(A) Reconstruction accuracy comparedwith Tomographer over all genes evaluated, using differentmetrics of similarity to the ground truth: Spearman’s R, relative

total error, and fraction of different pixels.

(B) Visualization of gene expression generated by ground truth and reconstructions.

(C) Unbiased determination of molecular anatomy obtained by pixel clustering of Tomographer.

(D) Number of detected protein groups of each microchannel from 0� and 90� cerebellum slices.

(E) Spatial clustering results based on reconstructions of Flow2Spatial in cerebellum.

(F) Boxplot shows the number of detected protein groups in LCM samples.

(G) Heatmap exhibits expression correlation between LCM samples.

(H) Pixel-by-pixel Spearman’s correlation of expression between LCM proteome and spatial transcriptomics (ST). Triangle shapes represent quality control

samples, x-shaped markers indicate failed collections during microdissection, and circles mark successfully collected and filtered samples.
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Figure S5. Validation of individual protein reconstructions by IF staining, related to Figure 4

Individual genes were capture by different methods, including PLATO (protein level), spatial transcriptomics (ST) (RNA level), and IF staining (protein level).
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Figure S6. Evaluation of different references on PLATO performance, related to Figure 4

(A) Flow2Spatial reconstructions using three different spatial omics datasets as reference: H&E staining image, spatial transcriptome, and spatial metabolome

(MALDI-MSI). The spatial clusters are based on these reference omics.

(B) Comparison of PLATO reconstructions using different reference omics. Spearman correlations were calculated for all spots in each region, using H&E and

spatial transcriptomics (ST) as references.

(C–E) Robustness validation of Flow2Spatial through three simulations.

(legend continued on next page)
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(C) Reference genes were divided into two groups based on the expression similarity between mRNAs and their corresponding proteins. Flow2Spatial re-

constructions were then executed separately by using these two gene groups as reconstruction reference.

(D) Using normal spatial transcriptomics data as a reference, the tissue angle was swapped, inputting an incorrect protein projection into Flow2Spatial by

converting angle labels from 0� to 90� and vice versa.

(E) Again using normal spatial transcriptomics data as a reference, the channel numbers were randomly shuffled before inputting the protein projection into

Flow2Spatial, resulting in an incorrect channel order.
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Figure S7. Spatial proteomics mapping of villus, related to Figure 5

(A) Spatial expression of representative proteins from naive villus.

(B) Images of rat stools after DSS treatment. Four pictures represent 0, 2, 4, and 6 days after DSS treatment.

(C) Intestinal tract length between naive and DSS-treated mice.

(D) H&E staining of villus between naive and DSS-treated mice.

(legend continued on next page)
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(E) Spatial expression of representative proteins from DSS-treated villus.

(F) Clustering based on reconstructions of Flow2Spatial in villus after DSS treatment. The clusters were visualized in different colors. Epi-1, -2, and -3 represent

epithelial layer 1, 2, and 3 in the clustering results, respectively.

(G) The number of GO biological processes enriched in different clusters of the villus.

(H) Spatial expression of transporters in each condition.
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(legend on next page)
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Figure S8. Spatial proteomic mapping of FFPE breast cancer tissue, related to Figure 6

(A) Workflow of PLATO for FFPE breast cancer tissue. Initially, consecutive FFPE slices of breast cancer tissue were obtained from an FFPE tissue block and

attached to customized adhesive glass slides. Following drying and heating, the slices underwent dewaxing and rehydration through successive immersions in

xylene and ethanol. Subsequently, we adopted a heat-induced antigen retrieval method to reverse the crosslinking of fixed proteins. The tissue slices were then

stained with hematoxylin and eosin (H&E). Next, two PDMS chips were directly placed on two tissue slices, respectively. Finally, the tissues within the micro-

channels were lysed directly by trypsin and analyzed using LC-MS/MS.

(B) Number of obtained protein groups of each microchannel from 0� and 90� slices.
(C) Regional concordance between LCM-based proteome and PLATO reconstructions. Each anatomical region is represented by all samples from the region.

Spearman’s coefficient was calculated.

(D) Spatial distribution of two proteins by PLATO, immunofluorescence staining, and LCM-based proteome.

(E) Dot plot showing the expression levels of top eight marker proteins in clustering regions.

(F) Gene Ontology functional enrichment by the top 100 marker proteins of two clustering regions.
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Figure S9. Spatial proteomic mapping of fresh frozen breast cancer tissue, related to Figure 6

(A) Number of protein groups obtained from each microchannel for 0� and 90� slices.
(B) Pathological annotations of breast cancer based on H&E staining images.

(C) Schematic diagram of microdissection points, with shaped dots indicating sampling areas and colored lines representing pathological annotations.

(D) Statistics on the number of LCM samples collected.

(E) Number of obtained protein groups from LCM samples.

(F) Concordance of regional boundaries between LCM-based proteome and PLATO reconstructions, with Spearman’s coefficients calculated.

(G) Spearman’s correlation of protein expression between LCM-based proteome and PLATO reconstruction, analyzed spot by spot.
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