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Abstract

Computational detection methods have been widely used in studies on the biogenesis and the function of circular RNAs
(circRNAs). However, all of the existing tools showed disadvantages on certain aspects of circRNA detection. Here, we pro-
pose an improved multithreading detection tool, CIRI2, which used an adapted maximum likelihood estimation based on
multiple seed matching to identify back-spliced junction reads and to filter false positives derived from repetitive sequences
and mapping errors. We established objective assessment criteria based on real data from RNase R-treated samples and
systematically compared 10 circular detection tools, which demonstrated that CIRI2 outperformed its previous version CIRI
and all other widely used tools, featured with remarkably balanced sensitivity, reliability, duration and RAM usage.
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Introduction

As a new class of noncoding RNAs, more and more circular
RNAs (circRNAs) have been found in diverse cell types, cellular
components, developmental stages and eukaryotic organisms
[1–6]. Recent studies have also pointed to distinct biogenesis
mechanisms and functions of circRNAs. For example, in con-
trast with several known circular microRNA sponges discovered
in cytoplasm [7, 8], nucleus-localized EIciRNAs were found to
function as parental gene transcription activators [9]. In add-
ition, the main circularization mechanism in yeast was reported
to be exon-containing lariat mediation [10] instead of the preva-
lent complementary intron mediation in multicellular organ-
isms [11–14]. A recent study revealed that more than one-third
of abundant circRNAs during epithelial–mesenchymal transi-
tion were promoted by RNA-binding protein QKI [15] rather
than the above two mechanisms.

Currently existing circRNA detection methods are all based on
identification of back-spliced junction (BSJ) reads, and they can
be further divided into annotation-dependent (such as MapSplice
[16], CIRCexplorer [11] and KNIFE [17]) and de novo (such as find_-
circ [8], segemehl [18] and CIRI [19]) algorithms. These methods
are not only used for a direct investigation of circRNA loci but

also as basis of more complicated analyses. For example, our pre-
vious method CIRI facilitated the development of another algo-
rithm on characterizing internal structure and alternative
splicing within circRNAs by providing BSJs and corresponding
reads [20]. Additionally, analysis of microRNA target, circRNA dif-
ferential expression and parental gene enrichment all unavoid-
ably call for more sensitive and reliable circRNA detection
algorithm. However, current methods still have room for im-
provement. In a recent report, Hansen et al. [21] pointed out that
prediction outputs of several detection algorithms were largely
distinct with each other, and all showed disadvantages on spe-
cific aspects of performance. Such disadvantages were reflected
in low sensitivity, low reliability, long duration, high RAM usage
and/or complicated pipeline, which indeed resulted from the
complexities of eukaryotic transcription and splicing as well as
differential expression of circRNAs from various origins. For ex-
ample, our previous method CIRI had the highest sensitivity of all
methods, which is essential for unbiased and in-depth study of
circRNA, but such comprehensive detection may lead to relatively
high false discovery rate (FDR).

Here, we propose CIRI2, a program designed to differentiate
BSJ reads from non-BSJ reads using efficient maximum likelihood
estimation (MLE) based on multiple seed matching. Such MLE
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helps CIRI2 differentiate BSJ reads from non-BSJ reads with erro-
neous mapping to repetitive sequence, and thus achieve bal-
anced performance with both low FDR and high sensitivity. This
increased differentiation ability combined with multithreading
allows CIRI2 to run faster and more efficiently use RAM. Through
comprehensive evaluation, we demonstrated the advantages of
CIRI2 compared with CIRI and all other eight algorithms.

Materials and methods
Overview of CIRI2

CIRI2 has the same input requirement as CIRI, including FASTA
formatted reference sequences and the SAM alignment gener-
ated by BWA-MEM [22], for de novo detection of circRNAs based
on BSJs. An optional GTF input can also be used by CIRI2 for an
extra annotation-dependent detection according to known lin-
ear RNA exon boundaries, as well as for detailed annotation of
all circRNA loci. CIRI2 is extensively optimized for the key steps
in circRNA detection, including inferring original region for
sequencing read segments based on seed matching, and distin-
guishing BSJ reads from forward-spliced junction (FSJ) reads
based on an adapted MLE. CIRI2 is applicable to sequencing data
with mixed read lengths, and can be run with multiple threads.
CIRI2 is freely available together with full documentation at
https://sourceforge.net/projects/ciri/.

Determination of the segment location
by multiple seed matching

There are situations where an aligner cannot determine the
mapping position of a segment in a sequencing read [23, 24], but
it is often crucial for a circRNA detection tool to infer whether
the segment is from a given genomic region. In CIRI, certain BSJ
reads with a short segment flanking the BSJ that cannot be pre-
cisely aligned to the reference sequence by short-read mappers,
named as ‘unbalanced junction reads’, are detected in the se-
cond round scanning. Such short segments are positioned by
dynamic programming alignments with a group of segments
from other reads with confident mapping positions
(Supplementary Figure S1). These dynamic programming align-
ments are often computing-intensive. In contrast, CIRI2 can
quickly achieve this key step by seed matching. If the segment
is from a given genomic region, all of the seeds from the seg-
ment should be found in this genomic region, with the excep-
tion of sequencing error or interrupting intron. In detail, if only
considering sequencing error rate i, for a seed with length of m,
the probability that the seed is found in its genomic region can
be simply estimated as (1-i)m, whereas the probability of a seed
to be randomly found in any genomic region with length l can
be estimated as (l-mþ 1)/4m. Thus, a quick match of a seed in a
given genomic region can be used to infer whether the original
segment of the seed is from the genomic region when a proper
m can be chosen to keep the sensitivity (1-i)m high and simul-
taneously to remain the FDR (l-mþ 1)/4m low.

Considering that short seeds are more likely to cause spuri-
ous matches, the above inference depending on single seed
matching often results in high occasionality. A much more ro-
bust solution is to apply multiple seed matching to determine
the location of a segment, where a majority of seeds should per-
fectly match their original genomic location while a small frac-
tion may fail to match because of sequencing errors or
interrupting introns. In detail, CIRI2 first divides the segment
into n seeds with length m and attempts to find the location of

each seed in a given genomic region with the same length l. If
only considering sequencing error rate i, the number of seeds (k)
that are found in its genomic region follows a binomial distribu-
tion B(n, (1-i)m), whereas the number of seeds (k’) that are ran-
domly found in any other genomic region follows a binomial
distribution B(n, (l-mþ 1)/4m). For example, for a 50 bp segment
divided into five seeds with length of 10 bp, it will have
4.5260.66 seeds perfectly matched to its genomic region with a
sequencing error rate at 1%, and have 0.48 6 0.66 seeds ran-
domly matched to other regions within a length of 100 kb.

Detection of BSJ reads based on MLE

The dynamic programming alignment implemented in CIRI is
dependent on the balanced BSJ reads directly indicated by
BWA-MEM. Consequently, falsely reported balanced BSJ reads
caused by spurious read mapping may lead to incorrect circRNA
predictions. In CIRI2, however, the detection of unbalanced BSJ
reads, as well as the balanced BSJ reads with low mapping qual-
ity, is more cautious. An adapted MLE is designed for such de-
tection by choosing one of the two possible genomic regions of
the key segment in these reads, according to the matched seed
numbers in these two regions that follow binomial distributions
with different probabilities.

As shown in Figure 1A, when other segment(s) in the same
read can be confidently aligned to reference sequences, the key
segment should be from either the putative downstream Region
1 consistent with back-splice genomic region, or the putative up-
stream Region 2 consistent with forward splice. For the two can-
didate regions, multiple seed-matching steps are processed
individually as mentioned above for a comparison of the
matched seeds in the next step. It should be noted that this seed
matching not only matches seed without sequencing error to its
genomic region but also might ‘randomly’ match a seed with
sequencing error to its genomic region. Thus, the corrected sensi-
tivity for single seed matching is p¼ 1-(1-(1-i)m)*(1-(l-mþ 1)/4m),
which is always larger than the FDR p’¼ (l-mþ 1)/4m no matter
what positive integer m (<l) is selected. The corresponding distri-
butions of multiple matching seeds in its genomic region and the
other region are therefore B(n, 1-(1-(1-i)m)*(1-(l-mþ 1)/4m) and B(n,
(l-mþ 1)/4m), respectively, and we can estimate the probability of
k and k’ matching seeds out of n in these two regions as follows:

PnðkÞ ¼
n

k

 !
pkð1� pÞn�k;

P0nðk0Þ ¼
n

k0

 !
p0k0ð1� p0Þn�k0 :

Next, the number of matched seeds in the Region 1 (k1) and
Region 2 (k2) is compared. The two possible results of such com-
parison are (1) k1> k2 and (2) k1 <¼ k2. For (1), the key segment
will have larger likelihood to be from Region 1 than from Region
2 because:

Pnðk1ÞP’nðk2Þ > Pnðk2ÞP’nðk1Þ ðgiven that p > p’Þ

and

Pnðk1ÞP’nðk2Þ
Pn k1ð ÞP’n k2ð Þ þ Pnðk2ÞP’nðk1Þ

> 0:5;

and thereby CIRI2 determines the corresponding read to be a
BSJ read. For (2), the key segment will have equal or larger
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likelihood to be from Region 2 compared with Region 1, and CIRI2
thereby determines the corresponding read to be a FSJ read.

Such adapted MLE has an overall FDR for BSJ read detection,
which can be estimated as follows:

FDRoverall ¼
Xn

k¼0

ðPnðkÞ �
Xn

k;¼kþ1

P’nðk’ÞÞ:

For example, for a 50 bp segment divided into five seeds
with length of 10 bp, the overall FDR of the above MLE is about
0.01% in theory when the sequencing error rate is 1% and both
lengths of the two regions are 100 kb. Although the above esti-
mation of FDR is based on random sequence, the MLE model is
also effective on avoiding false prediction in repetitive regions.
As shown in Supplementary Figure S2, the model directly com-
pares matched seeds within the two candidate regions of repeti-
tive sequence, and, thus, subtle differences between the two
regions can be easily detected.

The above MLE is also used in paired-end mapping filtra-
tion for all candidate BSJ reads. In the actual implementation
of CIRI2, we made several adjustments to improve the efficiency
of the above MLE: (1) set the minimum and maximum of l as 50
and 200 kb, respectively, so that the selected genomic re-
gions can cover the vast majority of nearby BSJ and FSJ
while simultaneously save running time; (2) use overlapped
seeds instead of independent seeds to maximize the utility of
segment sequence; (3) set additional matching thresholds and
consider relative positions of matched seeds to further decrease
FDR for BSJ read detection, especially for short seeds; and (4)
adopt an iterative seed matching in a descending order of
length m, in which shorter seeds with higher sensitivity are
used in case that longer seeds fail to achieve the matching
thresholds.

The implementation of multithreading in CIRI2

To facilitate large data set analysis, multithreading is imple-
mented in CIRI2 using Perl module ‘threads’. When user desig-
nates more than one thread by parameter T, CIRI2 will first
divide the SAM file into the corresponding number of equal
parts. Because such division will cause separation of alignment
records from the same reads at division points, CIRI2 records
these reads and subsequently extracts their remaining align-
ments from the next part and add them back to make sure every
divided part of SAM file has the complete alignment record for
read pairs. During the double scanning of SAM records, CIRI2 al-
locates threads to each of the divided part, and then detects BSJ
reads based on the MLE as described above. It should be noted
that the ‘threads’ module will increase RAM usage for each allo-
cated thread. To reduce RAM usage, CIRI2 stores intermediate
results (i.e. candidate BSJs and the corresponding reads) into a
temporary file when scanning the SAM alignment. After all
threads get finished, these temporary files will be processed by
one thread for final circRNA prediction.

Benchmarking circRNA detection using 10 algorithms

RNA-seq data sets generated in previous studies were used for
circRNA detection by 10 popular tools, including CIRI [19], CIRI2,
CIRCexplorer [11], circRNA_finder [1], DCC [25], find_circ [8],
KNIFE [17], MapSplice [16], segemehl [18] and UROBORUS [26],
with the parameters shown in Supplementary File 1, which
were suggested by algorithm developers or previous studies.
Four data sets of Hs68 cell lines [27], including two with RNase R
treatment (accession numbers SRR444974 and SRR445016) and
two without RNase R treatment (accession numbers SRR444655
and SRR444975), were downloaded from the SRA database. Two
data sets of HEK293 cell lines [20], including one with RNase R

Figure 1. The MLE-based algorithm implemented in CIRI2. (A) Detection of back-spliced read can be simplified as making a decision on whether the specific segment is

from genomic Region 1 (BSJ) or Region 2 (FSJ). (B) CIRI2 divides the segment into seeds, and attempts to perfectly match the seeds in Region 1 and Region 2. (C) A MLE is

adopted to position the segment based on seed matching.
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treatment (accession number SRR3479244) and one without
RNase R treatment (accession number SRR3479243), were also
downloaded from the SRA database. All algorithms were run for
each individual data set, and BSJ read counts for each circRNA
in the two replicates with the same treatment of Hs68 cell line
were summed. Human hg19 genome sequences were down-
loaded from the UCSC Web site and used as references.
Duration and RAM usage were monitored by running command
‘qstat –f Job_ID’ on our Portable Batch System every 10 s for each
detection.

Calculation of sensitivity, FDR and F1 score

We used a similar criteria with a previous study [21] to evaluate
candidate circRNAs detected with BSJ reads count �3 in the
data sets without RNase R treatment. In detail, if candidate
circRNAs detected by each tool were obviously enriched after
RNase R treatment (at least 3-fold increase of BSJ reads count),
they were labeled as true positives. In contrast, candidate
circRNAs not detected or largely depleted (with fewer BSJ reads
count) after RNase R treatment were labeled as false positives.
The remaining candidate circRNAs detected after RNase R treat-
ment but without obvious enrichment were labeled as undeter-
mined. The ratio of false positives in all of the predictions by
each tool was calculated as FDR of the algorithm. We next
summed true positives predicted by all tools as the estimated
total circRNAs in the data sets. The ratio of true positives

detected by each tool in the above total circRNAs was used to
evaluate the sensitivity of the tool. To compare performances of
all tools, we applied a single metric F1 score that simultaneously
considers sensitivity and FDR of the tool. The F1 score was cal-
culated according to the formula F1¼2*sensitivity*(1-FDR)/(sen-
sitivityþ 1-FDR).

Results
Improved circular identification for low FDR and low
time complexity

To quantify the performance improvement of CIRI2 compared
with CIRI, we applied both tools to previously generated RNA-
seq data sets of Hs68 [27] without RNase R treatment. As shown
in Figure 2A, predictions of CIRI and CIRI2 in the data sets
showed a significant overlap—3041 of 4037 candidate circRNAs
in CIRI were also detected by CIRI2. The remaining 996 candi-
dates were filtered out by CIRI2, and there were also 148 candi-
dates predicted by CIRI2 but not by CIRI. We next determined
the number of true-positive and false-positive circRNAs based
on BSJ read enrichment by incorporating the data sets treated
with RNase R. As shown in Figure 2B, CIRI2 could effectively re-
move false positives in CIRI (435 versus 1062) but kept true posi-
tives largely unchanged (2440 versus 2594), which indicated the
balanced performance of CIRI2 on both FDR and sensitivity.
Moreover, the vast majority of lost true positives had lower

Figure 2. Performance comparison between CIRI and CIRI2. (A) Overlap of circRNA predictions by CIRI2 and CIRI on Hs68 data sets. (B) RNase R resistance of the CIRI

and CIRI2 predictions for Hs68 data sets. (C) RNase R resistance and BSJ read count detected for each prediction by CIRI and CIRI2. Only predictions with BSJ read counts

�150 are shown. (D) RNase R resistance of top 1000 most abundant predictions. Blue nodes indicate the circRNAs enriched by RNase R treatment, whereas red nodes in-

dicate the circRNAs depleted by RNase R treatment. (E) Comparison of computing operation counts of CIRI and CIRI2 for the Hs68 data set (SRR444975).
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expression levels, but the removed false positives were mainly
composed of abundant predictions. When focusing on the 996
and 148 predictions exclusively detected by the two algorithms,
we found that CIRI2 only missed 33 true positives with more
than five BSJ reads, but it successfully filtered 325 false positives
more than CIRI at the same expression level (Figure 2C). When
focusing on the top 1000 most abundant predictions, we
observed a more stable reliability of CIRI2 compared with CIRI
(Figure 2D). We also tested them on another data set of HEK293
with longer sequencing reads, and found a similar trend
(Supplementary Figure S3).

To further explore the efficiency on filtering false positives of
the adapted MLE in CIRI2 and the dynamic programming align-
ment in CIRI, we scrutinized the mapping details of BSJ reads for
abundant candidates only predicted by CIRI. We found that these
false predictions could be mainly attributed to repetitive se-
quences across human chromosomes or unplaced contigs in the
human genome assembly. For example, a candidate circRNA
(chr8: 70 602 323j70 602 497) had 14 BSJ reads according to CIRI
prediction, but our manual curation showed that most of these
BSJ reads indeed could be aligned to repetitive regions of an un-
placed contig (Un_gl000220) at a higher identity compared with
chr8. Because one of the 14 reads was wrongly mapped to chr8,
the dynamic programming alignment implemented in CIRI
treated other 13 reads as ‘unbalanced junction reads’ and, thus,
lead to false prediction. In CIRI2, however, the determination of a
BSJ read was based on the individual MLE according to multiple
seed matching rather than its sequence similarity with other BSJ
reads, and, therefore, such false positives can be largely avoided.
Indeed, the majority of abundant predictions (74.2% of 416 with
more than five BSJ reads) exclusively detected by CIRI could be
aligned to unplaced contigs at a high sequence identity (>90%) or
contained a high percentage of unreliable ‘unbalanced BSJ reads’
(>75%) attributed to the dynamic programming alignment in
CIRI. In contrast, such percentage was much lower in the predic-
tions reported by both CIRI and CIRI2 as well as those exclusively
detected by CIRI2 (3.5% of 1244 and 3.3% of 30, respectively).

We further counted the computing operations of CIRI and
CIRI2 when using them to process the above data set. As shown
in Figure 2E, sequencing reads required a significant amount of
computing operations (10–10 000 per read) in CIRI, whereas MLE
based on multiple seed matching in CIRI2 could make a decision
in merely several operations for the vast majority of sequencing
reads to determine whether they were from BSJs. As the oper-
ation times largely reflects time complexity and determines the
running time of the algorithm, the above evaluation indicated
that the optimization of CIRI2 has much higher computation ef-
ficiency compared with CIRI.

Comparison on sensitivity and reliability

We next applied eight widely used algorithms including
CIRCexplorer [11], circRNA_finder [1], DCC [25], find_circ [8], KNIFE
[17], MapSplice [16], segemehl [18] and UROBORUS [26] to the same
data sets and compared their performance with CIRI2. Using the
criteria described above, we found that all of these existing algo-
rithms showed some biased performance on detecting true posi-
tives and filtering false positives (Figure 3A). For example,
although segemehl achieved the highest sensitivity, it also re-
sulted in a large amount of false positives. On the other hand,
MapSplice showed excellent ability in controlling the FDR, but it
could only identify about two-thirds of the true positives detected
by segemehl. In contrast, CIRI2 had much more balanced perform-
ance. It exhibited similar low FDR with MapSplice and

CIRCexplorer and simultaneously achieved comparable sensitivity
with segemehl. We further tested the above tools on the 150 bp
HEK293 data set. Similarly, CIRI2 showed both high sensitivity and
low FDR, whereas all other algorithms were inferior to CIRI2 in at
least one of the two metrics (Figure 3B), regardless of the expres-
sion levels of circRNAs (Supplementary Figure S4).

To better understand the overall performance of these tools,
we defined an evaluation metric, F1 score, which equally favors
increase of sensitivity and decrease of FDR. As shown in
Supplementary Figure S5, CIRI2 had the highest F1 scores in both
data sets (Hs68: 0.752 and HEK293: 0.757) in all of the nine algo-
rithms. When applying different thresholds of RNase R enrich-
ment to determine true positives, CIRI2 outperformed all other
algorithms in all of the cases (Supplementary Figure S6), which
demonstrates the stable performance of CIRI2 on detecting
circRNAs with different resistance to RNase R. We next selected
other four algorithms frequently used in previous studies
(CIRCexplorer, MapSplice, find_circ and KNIFE), and compared
their predicted circRNAs with those detected by CIRI2. As shown
in Figure 3C, all five algorithms shared 858 predictions in the data
set of HEK293, whereas 837 were exclusively detected by only one
algorithm, which were termed as exotic circRNAs in the previous
study [21]. As exotic circRNAs could effectively reflect both reli-
ability and indispensability of an algorithm, we scrutinized exotic
circRNAs of all five algorithms. As shown in Figure 3D, exotic
circRNAs of CIRI2 contained the lowest percentage (23.6%) of false
positives, while the other four tools were enriched with false
positives in their exotic circRNAs (44.5–60%). Meanwhile, CIRI2
also exclusively detected the largest number of true positives
(182 of 322 exotic circRNAs), which were even more than the sum
of all other four tools (157 of 515 exotic circRNAs in total). Besides
the exotic circRNAs and predictions shared by all five tools, there
were 1211 predictions shared by CIRI2 and at least one of the
other tools, which were significantly >147 predictions exclusively
shared by other tools (Wilcoxon rank test, P < 0.01), indicating
that circRNAs detected by CIRI2 were more likely to be supported
by other independent tools. Moreover, the CIRI2-related group
contained much more true positives (716 versus 61) and lower
percentage of false positives (16.4 versus 27.9%).

Taken together, the above performance evaluations demon-
strated that CIRI2 outperformed all currently available tools on
detecting circRNAs, and it could not be replaced by any of the
other eight algorithms or their combinations.

Comparison on duration, RAM usage and dependencies

We next asked whether the good performance of CIRI2 is based
on long duration or high memory usage. The largest data set
from Hs68 and the RNase R-treated data set from HEK293 were
used to benchmark the computation resources required by all
10 tools including CIRI and CIRI2. It should be noted that all of
these tools are dependent on specific mappers. Therefore, we
compared computation resources required by the whole pipe-
line recommended by developer instead of the circRNA detec-
tion step itself. We found that most of the pipelines with better
performances tended to need longer running time. For example,
MapSplice and CIRCexplorer pipeline ran for >60 h on the
41.3 Gb data set of Hs68 when 10 threads were used (Figure 4A).
However, CIRI2 was exceptional—its whole pipeline including
generating SAM and CIRI2 analysis only spent about 8 h on the
same data set, which ranked the second fastest tool (Figure 4A
and Table 1). The running time of CIRI2 step could be further
shortened through multithreading. For example, it took only
1.5 h when 10 threads were used (Figure 4C).
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Figure 3. Comparison of CIRI2 and other eight circRNA detection methods. (A) Sensitivity and FDR of CIRI2 and other eight methods for the Hs68 data sets. (B)

Sensitivity and FDR of CIRI2 and other eight methods for the HEK293 data sets. (C) Overlap of circRNA predictions by CIRI2 and other four frequently used methods on

the HEK293 data sets. (D) RNase R resistance of the exotic and shared predictions by CIRI2 and the other four frequently used methods.

Figure 4. Duration, RAM usage and dependencies of CIRI2 and other detection methods. (A) Duration and RAM usage of 10 tools for the Hs68 data set (SRR444975).

Single thread was used for CIRI2. (B) Duration and RAM usage of 10 algorithms for the HEK293 data set (SRR3479244). Single thread was used for CIRI2. (C) Running time

of CIRI2 for both data sets when single thread or 10 threads were used. (D) Number of mappers and dependencies of CIRI2 and other eight methods.
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RAM usage directly determines whether an algorithm can be
conveniently run on any available server with limited RAM. We
monitored RAM usage of all 10 pipelines, and found that they
could be divided into two groups according to their RAM usage.
Segemehl, circRNA_finder, UROBORUS, DCC, CIRCexplorer and
CIRI2 pipelines showed relatively stable RAM usage regardless of
data size, whereas the other four pipelines needed much more
RAM (1.5- to 3.8-fold) for the 41.3 Gb Hs68 data set than the
12.7 Gb HEK293 data set (Figure 4A and B). As to actual RAM usage,
most of the tools needed >20 Gb RAM for at least one of the data
sets, and may call for moderate or high-performance server. In
contrast, find_circ, UROBORUS, CIRI2 and CIRCexplorer pipelines
used <10 Gb RAM for both data sets (Figure 4A and B), and there-
fore were able to run on personal computer or small server.

To further compare usability of these detection methods, we
also summarized dependencies, mappers and steps required by
them. As shown in Figure 4D and Table 1, none of the other eight
methods could independently complete detection of circRNAs, and
some of them even depended on three to four additional tools or
non-default packages for installation and running. In contrast,
CIRI2 was the only standalone tool of all. As to mappers, segemehl
could complete mapping of sequencing reads all by itself, whereas
other tools needed to invoke or analyze mapping output of one
(circRNA_finder, CIRI2, DCC, find_circ and MapSplice) or two
(CIRCexplorer, KNIFE and UROBORUS) additional tools. We also
summarized the steps of the corresponding pipelines, and found
these tools needed one to four steps to complete their detection
(Supplementary Figure S7 and Supplementary Table S1).

Discussion

Detection of circRNA loci is usually an initial and important step
for in-depth study of circRNAs, such as binding site prediction, in-
ternal structure identification, expression analysis and function
exploration. Although several computational methods have been
developed for circRNA detection, different studies that evaluated
and compared these methods often drew contradictory conclu-
sions. Such inconsistency can be attributed to the lack of a highly
confident database and the distinct basis of the criteria adopted
by the studies. Tests based on simulated data were commonly
used in such evaluation, but it is difficult to evaluate whether the
related simulation methods themselves were reasonable.
Moreover, simulated data can hardly mimic complexities of eu-
karyotic transcription and splicing, and thus are not ideal choice
for circRNA detection evaluation by now. In contrast, real data
from RNase R-treated samples can provide relatively objective as-
sessments. BSJ read count enrichment evaluation in these sam-
ples was first used to confirm the reliability of predictions in a
pipeline [27], and then it was adapted to estimate FDR of five de-
tection methods [21]. However, without estimating sensitivity of
methods, comparison of the detection methods, especially on the
basis of single threshold of RNase R enrichment, remains to be
partial. Here, we adopted the same approach for FDR estimation,
and simultaneously introduced sensitivity based on all RNase R-
resistant predictions of the methods to be compared. The F1

scores, calculated based on the estimated FDR and sensitivity by
applying multiple thresholds of RNase R enrichment, facilitate a
direct comparison of circRNA detection methods and represents
an impartial metric that could be widely used in future.

A well-designed circRNA detection method should have good
performances on sensitivity, FDR, duration and RAM usage, but
with few dependencies for its implementation. The metric of sen-
sitivity evaluates the percentage of circRNAs that can be detected
by a method and the possibility of the method to uncoverT
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unknown circRNAs or functions. FDR reflects the reliability of each
prediction as well as whether it could be used for experimental
validation and further analyses. RAM usage and dependencies de-
cide the availability and feasibility of a tool on limited computation
resource, and duration largely concerns how long a method could
generate results available for further study. It should be mentioned
that our previous study [21] demonstrated, because of the rela-
tively low abundance of most circRNAs, in-depth studies on
circRNAs such as alternative splicing analysis needed much more
data than previously thought, which will largely challenge detec-
tion tools on their duration and RAM usage.

Here, we used an adapted MLE to identify BSJ reads.
Compared with simply analyzing limited mapping records or
similarity with other reads, such MLE considers both possible re-
gions of undetermined segment in a potential BSJ read, and thus
is highly effective in filtering false positives derived from errone-
ous mapping or repetitive sequences in the genome. Also, as the
underlying multiple seed matching can tolerate sequencing
errors or interrupted eukaryotic transcription but in the same
time substantially reduce computing operations, it facilitates the
efficient and prompt implementation of the above MLE in de novo
circRNA detection. Through extensive performance evaluations,
CIRI2 was demonstrated to have the best average F1 score in the
test data sets, and need shorter running time and lower RAM
usage than most of other algorithms, with no requirement of
dependencies. Because of extensive attention and limited know-
ledge on circRNAs, we believe that CIRI2 provides an efficient and
unbiased circRNA detection approach for future circRNA studies.

Key Points

• An adapted MLE model with dramatically reduced FDR
and running time.

• Establish objective assessment criteria based on real
data sets from RNase R-treated samples.

• CIRI2 shows the best performance among 10 popular
circRNA detection tools.

Supplementary Data

Supplementary data are available online at http://bib.oxford
journals.org/.
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