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Real-time and programmable transcriptome 
sequencing with PROFIT-seq

Jinyang Zhang    1,5, Lingling Hou1,5, Lianjun Ma2,5, Zhengyi Cai1,3, Shujun Ye2, 
Yang Liu2, Peifeng Ji1, Zhenqiang Zuo1 & Fangqing Zhao    1,3,4 

The high diversity and complexity of the eukaryotic transcriptome 
make it difficult to effectively detect specific transcripts of interest. 
Current targeted RNA sequencing methods often require complex 
pre-sequencing enrichment steps, which can compromise the 
comprehensive characterization of the entire transcriptome. Here we 
describe programmable full-length isoform transcriptome sequencing 
(PROFIT-seq), a method that enriches target transcripts while maintaining 
unbiased quantification of the whole transcriptome. PROFIT-seq 
employs combinatorial reverse transcription to capture polyadenylated, 
non-polyadenylated and circular RNAs, coupled with a programmable 
control system that selectively enriches target transcripts during 
sequencing. This approach achieves over 3-fold increase in effective data 
yield and reduces the time required for detecting specific pathogens or 
key mutations by 75%. We applied PROFIT-seq to study colorectal polyp 
development, revealing the intricate relationship between host immune 
responses and bacterial infection. PROFIT-seq offers a powerful tool for 
accurate and efficient sequencing of target transcripts while preserving 
overall transcriptome quantification, with broad applications in clinical 
diagnostics and targeted enrichment scenarios.

The diversity of the eukaryotic transcriptome is greatly expanded by 
alternative transcription and alternative splicing, and the enormous 
number of molecules of different types makes it difficult to character-
ize specific transcripts of interest. Although targeted RNA sequencing 
(RNA-seq)1–4 can improve the sensitivity of detecting target transcripts, 
these hybridization capture and amplicon-based methods rely on effi-
cient probe or primer design and lose quantitative information during 
the enrichment process. Nanopore sequencing, offering long read 
lengths and native modification detection ability, has been widely 
applied in transcriptome studies. During the sequencing process, nega-
tively charged DNA or RNA molecules are driven through the nanopore 
by a constant voltage5, where Oxford Nanopore Technologies (ONT) 
provides an adaptive sequencing feature that can reject sequencing 

fragments by reversing the drive voltage6. Recent studies have devel-
oped adaptive sequencing strategies to enrich target genomic regions 
and deplete unwanted genomes7–11, but no effort has been made in 
the field of transcriptome adaptive sequencing. The enrichment effi-
ciency with the current RNA-seq protocol is also limited by the RNA 
molecule length, with rejected fragments inevitably including over 
half of the unwanted transcripts8. Moreover, canonical nanopore com-
plementary DNA sequencing using oligo(dT) reverse transcription 
(RT) can only capture polyadenylated RNAs and is unable to profile 
non-polyadenylated transcriptomes.

To overcome these challenges, we developed the program-
mable full-length isoform transcriptome sequencing (PROFIT-seq) 
strategy. PROFIT-seq employs combinatorial RT and rolling circle 

Received: 11 April 2024

Accepted: 18 September 2024

Published online: xx xx xxxx

 Check for updates

1Institute of Zoology, Chinese Academy of Sciences, Beijing, China. 2Endoscopy Center, China–Japan Union Hospital of Jilin University, Changchun, 
China. 3University of Chinese Academy of Sciences, Beijing, China. 4Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, 
University of Chinese Academy of Sciences, Hangzhou, China. 5These authors contributed equally: Jinyang Zhang, Lingling Hou, Lianjun Ma.  

 e-mail: zhfq@ioz.ac.cn

http://www.nature.com/naturecellbiology
https://doi.org/10.1038/s41556-024-01537-1
http://orcid.org/0000-0002-5163-894X
http://orcid.org/0000-0002-6216-1235
http://crossmark.crossref.org/dialog/?doi=10.1038/s41556-024-01537-1&domain=pdf
mailto:zhfq@ioz.ac.cn


Nature Cell Biology

Technical Report https://doi.org/10.1038/s41556-024-01537-1

we demonstrated that our method can effectively capture polyade-
nylated, non-polyadenylated and circular transcriptomes and enrich 
the target RNA panel while achieving reliable whole-transcriptome 
quantification. We next used PROFIT-seq for rapid detection of the 

amplification (RCA) to effectively capture the whole transcriptome, 
and implemented a user-friendly adaptive sequencing system for pro-
grammable enrichment of target transcripts while preserving the undis-
turbed abundance of all transcripts. Through extensive evaluations,  
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Fig. 1 | Real-time and programmable transcriptome sequencing with PROFIT-
seq. a, A schematic overview of the PROFIT-seq method. First, the ribosomal 
RNA-depleted total RNA was reverse transcribed using a combinatorial RT 
strategy. Double-stranded oligo(dT) (dsdT), dsN and ssN were successively added 
to capture polyadenylated, non-polyadenylated and circular RNAs. The reverse-
transcribed cDNA was then circularized and amplified using the RCA assay. 
The nanopore sequencing library was constructed, and PROFIT-seq was used 
for real-time control of the sequencing process. The acquired chunk data were 
basecalled and demultiplexed according to the sequencing time, channel number 
and detected barcodes. The basecalled sequences were subsequently aligned to 
the reference genome. Finally, PROFIT-seq determined whether the sequencing 

process should be continued or rejected according to the user-provided 
sequencing configuration. b, The length of rejected (purple) and finished (green) 
reads for canonical DNA, cDNA and PROFIT-seq runs. All bulk fast5 runs were 
simulated for sequencing all reads or rejecting all reads for 1 h. c, The elapsed 
time for raw signal basecalling, sequence alignment and pore manipulation for 
each acquired chunk of data. d, PROFIT-seq provides three manipulation modes, 
including enrichment or depletion of reads aligned to target regions and the 
balancing mode for dynamic determination of enriching targets based on the 
accomplished coverage. e, The performance of enriching chromosomes 1, 2, 5, 11 
and 12 and depleting other chromosomes (middle) or balancing coverage of all 
chromosomes (right). Source numerical data are available in Source data.
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microbiome composition and severe acute respiratory syndrome coro-
navirus 2 (SARS-CoV-2) infection from sputum samples of patients with 
pneumonia or coronavirus disease 2019 (COVID-19). Finally, we used 
PROFIT-seq to explore the transcriptome landscape in colorectal polyp 
development, unveiling the complex association between the immune 
response and microbiome infection during intraepithelial neoplasia 
transformation. Overall, as a flexible targeted RNA-seq protocol with 
reliable whole-transcriptome quantification capabilities, PROFIT-seq 
can serve as a useful approach for rapid clinical diagnostics and target 
gene enrichment.

Results
Programmable total transcriptome sequencing with 
PROFIT-seq
To effectively enrich various transcript types, we first employed 
a combinatorial RT strategy using double-stranded oligo(dT), 
double-stranded random primer and single-stranded random primer 
to capture full-length polyadenylated, non-polyadenylated and circular 
transcripts (Fig. 1a and Methods). Then, we employed splint-based 
circularization12 and the RCA assay following the Rolling Circle Ampli-
fication to Concatemeric Consensus (R2C2) protocol13 to increase 
the length of cDNAs and improve the power of discriminating fin-
ished and rejected reads. Here, the increased length of RCA products 
(>10 kb) compared with linear RT products (~1 kb) provided the basis 
for effective target enrichment. Finally, the library was constructed and 
sequenced on the MinION platform. Raw sequencing reads were divided 
into subreads using the circularization splint sequence, and consensus 
sequences were calculated to accurately represent the high-fidelity 
transcripts (Methods). To improve the applicability of current adaptive 
sampling tools, PROFIT-seq provides a user-friendly web interface for 
programmable real-time sequencing manipulation, allowing users to 
specify sequencing mode, run duration, channel number, barcodes 
and genes of interest, or upload a configuration file for multiple target 
submissions (Extended Data Fig. 1a–c).

To demonstrate the benefit of the PROFIT-seq protocol, we simu-
lated different DNA, cDNA and PROFIT-seq sequencing runs for 1 h 
using the playback function of the MinKNOW software (Methods). As 
shown in Fig. 1b, the rejected reads in both runs had a median length of 
~600 bp, with rejected reads in the cDNA run inevitably accounting for 
~67.5% (554 of 820 bp) of full-length sequences, impeding the enrich-
ment efficiency. In contrast, the finished reads in the PROFIT-seq run 
were 10-fold longer than rejected reads, indicating a more discrimina-
tive length difference. The real-time analysis efficiency of PROFIT-seq 
was verified by assessing the elapsed time for data processing steps. 
Based on the mapping rate of basecalled sequences, an optimized data 
acquisition interval of 0.4 s was determined (Extended Data Fig. 1d), and 
all data processing steps were able to be finished within every chunk 
acquisition period (Fig. 1c). Then, the enrichment effect was evaluated 
using three pore manipulation modes: (1) enrichment of target region, 
(2) depletion of target region and (3) balancing mode, where target 
regions are dynamically determined according to the sequenced cov-
erage (Fig. 1d). PROFIT-seq successfully enriched target regions, with 
72.10% of consensus reads aligning to target chromosomes in enrich-
ment mode compared with 35.00% in control. In addition, the standard 
variance of reads aligned to different chromosomes decreased from 
2.20 in control samples to 1.48 in balancing mode (Fig. 1e), demonstrat-
ing the successful pore manipulation using PROFIT-seq.

Combinatorial whole-transcriptome RT
As current nanopore cDNA sequencing protocols often employ 
oligo(dT)-based RT to capture polyadenylated RNAs, the diversity 
of non-polyadenylated transcripts is largely missing. In contrast, 
PROFIT-seq employs a combinatorial RT strategy with double-stranded 
oligo(dT), double-stranded random primer and single-stranded random 
primer to capture full-length polyadenylated, non-polyadenylated and 

circular RNAs14. To assess the performance of our combinatorial RT pro-
tocol, total RNA from HeLa cells was reverse transcribed using indexed 
combinatorial RT primers (Methods), and reads were demultiplexed 
on the basis of the aligned index primers in the first and last 150 bp of 
the sequences. In two replicates, 82.35% of the sequenced molecules 
originated from double-stranded oligo(dT) (dsdT) primers, while 
double-stranded random hexamers (dsN) and single-stranded random 
hexamers (ssN) accounted for 12.55% and 5.05%, respectively (Fig. 2a). 
The majority of combinatorial RT reads aligned to the exonic regions of 
GENCODE-annotated genes (Extended Data Fig. 2a). Compared with the 
oligo(dT) primer, random hexamers generated reads of similar length 
(Fig. 2b) but displayed a more even distribution across the 5′ end of tran-
scripts (Fig. 2c) and captured more non-polyadenylated transcripts (for 
example, pseudogene, long non-coding RNA (lncRNA), miscellaneous 
RNA (miscRNA) and small nuclear RNA (snRNA)) (Fig. 2d). In particular, 
ssN primers captured more circular RNAs (circRNAs), aligning with our 
original intent of the combinatorial RT strategy. Compared with oligo(dT) 
libraries, the combinatorial RT sample also demonstrated an increase in 
the proportion of reads from circRNAs and other non-polyadenylated 
transcripts (Extended Data Fig. 2b,c), indicating that PROFIT-seq was 
able to efficiently capture non-polyadenylated RNAs.

To validate the quantification ability of the combinatorial RT 
method, two random and two oligo(dT) primed cDNA libraries were 
constructed and sequenced as described above. Compared with the 
HeLa Illumina total RNA-seq15,16, oligo(dT), combinatorial RT and ran-
dom primed libraries exhibited high correlation of gene-level expres-
sion values (R = 0.65; Extended Data Fig. 2d), which demonstrated 
that combinatorial RT does not bias quantification. For the poly(A)+ 
transcriptome, the combinatorial RT library (R = 0.65) achieved similar 
transcript-level quantification accuracy to oligo(dT) libraries (R = 0.67; 
Extended Data Fig. 2e), while the random primed library was sub-
stantially biased (R = 0.49). Thus, these results demonstrated that 
combinatorial RT could combine the poly(A)+ and poly(A)− transcrip-
tomes without introducing notable bias that skews the quantification 
analyses. To further investigate the performance of combinatorial RT, 
a total of 22,649 poly(A)+ and 302 poly(A)− genes were identified using 
the public poly(A)-enriched and poly(A)-depleted dataset16 (Fig. 2e). 
Among them, a total of 16,453 poly(A)+ and 111 poly(A)− genes were 
successfully recovered in the combinatorial RT dataset. The abundance 
of poly(A)+ genes correlated highly with oligo(dT) and ONT direct 
RNA-seq17, while poly(A)− genes were enriched by the combinatorial 
RT protocol (Fig. 2f,g), indicating that combinatorial RT can better 
characterize the non-polyadenylated transcriptome compared with 
canonical poly(A)+ RNA-seq approaches.

For instance, canonical oligo(dT) cDNA-seq only sequenced two 
protein-coding isoforms from the RPL34 gene, while combinatorial RT 
effectively captured the retained intron supported by the GENCODE 
v37 annotation18 (Fig. 2h). Similarly, oligo(dT) data only captured the 
major protein-coding isoform in the RPS2 gene, but combinatorial RT 
effectively reconstructed three alternative-spliced isoforms and one 
pseudogene from the same locus. Moreover, the combinatorial RT 
also effectively captured more transcript isoforms in lower-expressed 
transcription factors such as MYC and SMARCE1 (Fig. 2i), demonstrating 
enhanced isoform discovery sensitivity.

To examine the quantitative performance of the complete 
PROFIT-seq protocol, the HeLa transcriptome was sequenced using the 
combinatorial RT and R2C2 amplification. As shown in Extended Data 
Fig. 3a, the transcript expression levels from the PROFIT-seq library and 
combinatorial RT library without R2C2 amplification were significantly 
correlated (R = 0.87, P < 10−31, Pearson correlation test), indicating 
reliable quantitative capability. Consistent with previous studies13,19, 
the consensus reads with a high circular consensus sequence number 
(>5) exhibited a high accuracy rate (99.22%; Extended Data Fig. 3b). In 
addition, PROFIT-seq provides a lightweighted strategy for consensus 
calling and RCA chimeric filtration (Methods), showing comparable 
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Fig. 2 | Simultaneous profiling of polyadenylated and non-polyadenylated 
transcriptomes using the combinatorial RT strategy. a, The percentage of 
reads derived from different primers. Rep, biological replicates. The colours 
indicate dsdT, dsN and ssN, respectively. b, The length of different primed 
reads in combinatorial RT libraries. c, The coverage across the top 1,000 highly 
expressed transcripts in different primed reads. The x axis represents the 
relative position along the transcript, and the y axis is the per cent coverage of 
combined reads. d, The proportion of reads aligned to transcripts of different 
biotypes according to the GENCODE annotation. The colours represent 
different primers. The proportion of circRNA reads is calculated using CIRI-
long. e, The identification of poly(A)+ and poly(A)− genes from Yang et al.16. 

Poly(A)+, poly(A)− and bimorphic genes were classified according to the relative 
abundance between the poly(A)+ and poly(A)− samples. f,g, The log-scaled gene 
expression levels of poly(A)+ and poly(A)− genes in combinatorial RT, oligo(dT) 
primed (f) and ONT direct RNA-seq data (g). Poly(A)+ and poly(A)− genes were 
classified according to the relative abundance between the poly(A)+ and poly(A)− 
samples from Yang et al. The colours represent the density of transcripts.  
h, Tracks of sequencing depth and reconstructed isoforms in the RPL34 and 
RPS2 loci. i, Tracks of sequencing depth and reconstructed isoforms in the MYC 
and SMARCE1 loci. The GENCODE v37 annotation and genomic coordinates are 
indicated above the tracks. Source numerical data are available in Source data.
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performance to the C3POa13 algorithm with similar read accuracy 
(Extended Data Fig. 3c–e), faster processing speeds (Wilcoxon rank sum 
test, P = 0.02; Extended Data Fig. 3f) and fewer RCA artefacts (Wilcoxon 
rank sum test, P = 0.02; Extended Data Fig. 3g).

Overall, these results demonstrated that PROFIT-seq can effec-
tively sequence polyadenylated, non-polyadenylated and circular tran-
scripts with high accuracy, which can better delineate transcriptome 
diversity compared with the canonical cDNA sequencing protocol.

Enrichment effect of PROFIT-seq on the target gene panel
Next, we evaluated the ability of PROFIT-seq to enrich the target gene 
panel in two colorectal polyp samples ( JL01 and JL19). Here, a panel of 
717 protein-coding genes, 1,055 lncRNAs and 606 circRNAs that are 
related to colorectal cancer were selected as enrichment targets on the 
basis of public databases20–23 (Fig. 3a). Each sequencing flow cell was 
divided into two sections, where half of the channels were sequenced 
with PROFIT-seq for target enrichment and the other half using the 
default program as a control. To validate the enrichment efficiency, 
the number of on-target and unwanted raw reads and consensus reads 
was calculated in a sliding window of 30 min. As shown in Fig. 3b,c, 
PROFIT-seq sequenced more molecules and produced more on-target 
raw and consensus reads in the first 12 h, and the number decreased 
gradually with the accelerated loss of pores during adaptive sequenc-
ing8. Finally, PROFIT-seq achieved an increased number of 1.9× target 
molecules and 1.68× target consensus reads compared to control runs, 
indicating the successful enrichment of cancer-related transcripts 
(Fig. 3d). Then, we investigated the number of cancer-related genes cov-
ered using the generated consensus reads. PROFIT-seq rapidly detected 
363 target genes (26 mRNA, 286 lncRNA and 39 circRNA loci) within 6 h, 
while the control runs only sequenced 219 target genes (18 mRNA, 174 
lncRNA and 21 circRNA loci) within that same amount of time (Fig. 3e,f). 
Finally, PROFIT-seq also generated a better number of recalled genes 
in the complete run. Here, 248 genes stably enriched with a >2-fold 
increase (Fig. 3g), and the overall enrichment efficiency was signifi-
cantly correlated between the two samples (R = 0.27, P = 4.61 × 10−23, 
Spearman correlation test; Fig. 3h), suggesting the effective enrichment 
of the cancer-related gene panel.

With the effective enrichment of cancer-related genes, we next 
examined the ability of PROFIT-seq to reveal RNA isoform diversity. 
Here, StringTie2 (ref. 24) was utilized for genome-wide transcript 
assembly using consensus PROFIT-seq reads. Compared with the con-
trol runs, PROFIT-seq dramatically improved the number of recon-
structed transcripts in the target locus. As shown in Fig. 3i, 78.11% and 
69.70% of cancer-related genes exhibited increased isoform diversity, 
while no similar effect was observed for non-target genes. For instance, 
only three isoforms from the GAS5 loci were identified in the control 
data, while seven and five isoforms were reconstructed in PROFIT-seq 
runs, respectively (Fig. 3j). Similarly, a notable increase in the aligned 
reads and reconstructed isoforms was also observed for the BID locus 
(Fig. 3k), indicating an increased discovery sensitivity of annotated 
genes. Taken together, these results suggested that PROFIT-seq was 
able to effectively enrich cancer-related genes and their splicing iso-
forms in clinical samples without prior experimental enrichment.

Unbiased quantification of targeted and non-targeted RNAs
As targeted reads are selectively enriched during the sequencing 
run, the quantification of targeted and non-targeted RNAs could be 
biased. To address this issue, we proposed an expectation–maximiza-
tion (EM)-based algorithm that combines full-length consensus reads 
and rejected partial reads for effective transcript reconstruction and 
unbiased quantification (Fig. 4a). Briefly, basecalled reads were divided 
into full-length reads and partial fragments on the basis of the exist-
ence of RT primers and template-switching oligo sequences. Enriched 
full-length reads were aligned to the reference genome, and transcripts 
were assembled using StringTie2 (ref. 24). Next, partial fragments of 

rejected reads were extracted and realigned to the reconstructed tran-
scripts. The expression value of each assembled transcript was meas-
ured by Salmon25 using full-length and partial reads, respectively, and 
the final expression values were determined on the basis of a modified 
EM algorithm (Methods).

In PROFIT-seq data, the percentage of full-length consensus reads 
in target transcripts was higher than that in non-target transcripts, 
indicating effective enrichment but also quantification bias (Fig. 4b 
and Extended Data Fig. 4a). Intriguingly, a high Spearman correlation 
(R = 0.687) between gene quantification results calculated from partial 
fragments and control runs was observed (Fig. 4c), which demon-
strated the viability of expression level correction using these partial 
fragments. When using full-length reads only, the gene expression 
values of target genes were substantially overestimated (Fig. 4d and 
Extended Data Fig. 4b), and the correlation was notably improved 
after the adjustment by the EM quantification algorithm (R = 0.717), 
indicating the effective correction of quantification bias.

We further benchmarked performance of the EM-based quantifi-
cation results against Illumina total RNA-seq data. As shown in Fig. 4e, 
the raw full-length PROFIT-seq data without quantification adjustment 
exhibited a weak correlation to the Illumina data, while adjusted gene 
quantification using both full-length and partial fragments was similar 
to that without sequencing manipulation. Notably, target gene expres-
sion levels in PROFIT-seq data exhibited a much lower dispersion level 
with Illumina and control samples (Fig. 4f and Extended Data Fig. 4c). 
Taken together, these results indicated that PROFIT-seq was able to 
effectively enrich target transcripts while maintaining unbiased tran-
script expression levels.

Rapid pathogen detection and variant identification
To demonstrate the performance of PROFIT-seq in detecting 
low-abundance pathogens, a total of 16 sputum samples were col-
lected from 8 patients with pneumonia and 8 patients infected with 
SARS-CoV-2. All samples were then sequenced using a modified 
PROFIT-seq protocol that uses only dsN and ssN to capture pathogenic 
RNAs without poly(A) tails. Each flow cell was divided into two sections 
for PROFIT-seq and control sequencing for 24 h as described above. 
To explore the pathogenic composition of each sample, the genomic 
sequences of pneumonia-related pathogens26,27 (for example, Strepto-
coccus pneumoniae, Staphylococcus aureus and Klebsiella pneumoniae) 
and SARS-CoV-2 were downloaded from the RefSeq28 database as enrich-
ment targets (Fig. 5a). Then, both non-full-length reads and cleaned 
consensus reads were aligned to the National Center for Biotechnology 
Information (NCBI) non-redundant protein sequences (NR) database 
using the long-read mode of diamond2 (ref. 29).

In agreement with previous studies, the total yield of raw reads 
in PROFIT-seq libraries was lower than unmanipulated control8, but 
a substantial enrichment in the number and yield of both raw reads 
and consensus reads from target pathogens was observed (Fig. 5b and 
Extended Data Fig. 5a). Notably, the amount of on-target data generated 
by the PROFIT-seq runs within 6 h was equivalent to that of control runs 
within 24 h (Extended Data Fig. 5b–d). Moreover, the total number of 
pathogen-derived consensus reads generated was also increased, with 
an average of 3.21- and 3.57-fold enrichment in the COVID-19 and pneu-
monia samples, respectively (Extended Data Fig. 5e). For the patients 
with COVID-19, we first evaluated the diagnostic efficiency measured 
by the coverage of the SARS-CoV-2 genome (minimum ten supporting 
consensus reads). Compared with the control runs, the coverage of the 
SARS-CoV-2 genome detected by PROFIT-seq exhibited a more rapid 
and efficient increase (Fig. 5c). Specifically, PROFIT-seq required much 
less time (24.40%) to achieve the same coverage (Fig. 5d) and was able 
to generate a higher yield (3.3-fold) of target pathogenic consensus 
reads within the same amount of time (Fig. 5e).

In particular, PROFIT-seq runs generated higher sequencing 
depth for the spike (S) protein, providing the basis for identifying 
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high-confidence mutations (Extended Data Fig. 5f). Notably, all 22 
representative Omicron mutations recorded in the 2019nCoVR data-
base30 and the key mutations of Omicron BF.7 subvariants31 (for exam-
ple, R346T, L452R and F486V) were successfully identified, which 
is consistent with the pandemic of BF.7 subvariants in the sampling 
region (Extended Data Fig. 5g). Of note, compared with the control runs, 

the PROFIT-seq method enabled the rapid and effective detection of 
S-protein mutations (Fig. 5f). The sensitivity of mutation identification 
was saturated within 6–12 h using PROFIT-seq, which surpassed the final 
sensitivity of 24 h sequencing in the control runs. Interestingly, although 
the S01 and S06 samples contained a low abundance of SARS-CoV-2, 
the majority of key mutations (~80%) could still be detected, indicating 
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during the sequencing run. The colours correspond to the PROFIT-seq (red) 
and control (grey) runs. The styles indicate two biological replicates. f, Bar plot 

indicating the number of recalled genes at 6 h in two biological replicates. g, The 
enrichment efficiency of each target gene at 6 h. The colours represent whether 
genes are 2-fold (red) or <2-fold (grey) enriched. h, The log-scale fold change 
(enrichment efficiency) of target genes between PROFIT-seq and control data 
in two polyp samples. The colours represent robustly enriched (red, ≥2-fold 
enrichment in both samples) and minorly enriched (grey) genes, respectively. 
R = 0.27, P = 4.61 × 10−23, Spearman correlation test. FC, fold change. i, The 
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the discovery sensitivity of GENCODE-annotated transcripts in each sample. 
Source numerical data are available in Source data.
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the significant advantage of PROFIT-seq in detecting low-abundance 
pathogen transcripts with highly accurate consensus sequences.

Next, we examined the composition of target bacterial pathogens 
in all samples. As shown in Extended Data Fig. 5f, although a high pro-
portion (>60%) of coronavirus was observed in most COVID-19 samples, 
S01 and S06 showed a distinct pathogen composition, in which >70% 
of assigned reads were identified as Haemophilus influenzae (Fig. 5g). 
The concurrent infection of H. influenzae and SARS-CoV-2 in these two 
samples also explained the low efficiency in detecting SARS-CoV-2 
variants. For pneumonia samples, PROFIT-seq also exhibited better per-
formance in detecting pathogenic reads (Fig. 5h), revealing the diverse 
source of dominant pathogens in different patients with pneumonia 
(for example, K. pneumoniae in P13, S. aureus in P15, S. pneumoniae in 
P26 and H. influenzae in others). Overall, these results suggested the 
widespread application of PROFIT-seq in rapid characterization of 
target pathogens in clinical samples.

Revealing host–microbiome association in polyp 
development
To further demonstrate the applicability of PROFIT-seq in character-
izing complex associations in disease, we performed PROFIT-seq on 18 
colorectal polyp samples including 6 inflammatory polyps, 5 low-grade 
intraepithelial neoplasia (LIN) and 7 high-grade intraepithelial neopla-
sia (HIN) samples (Fig. 6a), targeting an immune- and tumour-related 
gene panel covering 106.69 Mb of genomic regions. In addition, reads 
that were unmapped or chimerically mapped to the reference genome 
were also enriched to detect unannotated transcripts, including patho-
gen RNAs or fusion transcripts. In addition, each sample was sequenced 
using Illumina total RNA-seq and PROFIT-seq without enrichment tar-
gets as the control for comparative analysis.

For highly supported genes with more than five aligned reads in 
both runs, 80.79% of targets were successfully enriched by PROFIT-seq, 
with 26.43% of the genes over 2-fold enriched (Fig. 6b). Overall, the 
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target gene panels were significantly enriched (Wilcoxon rank sum test, 
P < 0.001) in all 18 PROFIT-seq runs (Extended Data Fig. 6a). Moreover, 
the percentage of consensus reads that mapped to unwanted ‘filtered 
regions’ was decreased (Fig. 6c), indicating the effective enrichment 

of the target gene panel. Moreover, PROFIT-seq generated more dis-
cordantly mapped or unmapped reads and fewer unwanted reads than 
Illumina total RNA-seq data, which validated the advantages of our 
combinatorial RT strategy in capturing and enriching the full spectrum 
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Fig. 5 | Rapid pathogen detection for sputum samples of patients with 
pneumonia or COVID-19. a, A schema of sample collection and target 
enrichment. Each flow cell was divided into two sections, where half of the 
pores were used to enrich target pathogens and the other half were sequenced 
without manipulation as a control. Adapted from Servier Medical Art by Servier 
under a Creative Commons license CC BY 4.0. b, The yield of total and on-target 
sequenced molecules in control and adaptive run. The y axis represents the 
number of raw reads or bases of all reads (top row) or target transcripts (bottom 
row). The bar colours represent control and adaptive runs, respectively. c, The 
coverage of SARS-CoV-2 genome during the sequencing process. The colours 
represent PROFIT-seq (red) or control runs (blue). The dashed lines indicate the 
time taken for adaptive sampling runs to achieve equivalent coverage as 24 h 
of control runs. d, The performance of PROFIT-seq in reducing elapsed time for 

SARS-CoV-2 detection. The points represent individual samples. The error bars 
indicate 95% confidence intervals (P = 0.0007, two-sided Wilcoxon rank sum test, 
n = 8 biological replicates). e, The performance of PROFIT-seq in increasing data 
yield for SARS-CoV-2 detection. The points represent individual samples. The 
error bars indicate 95% confidence intervals (P = 0.0007, two-sided Wilcoxon 
rank sum test, n = 8 biological replicates). f, The sensitivity of S-protein variant 
calling using PROFIT-seq (red) or control (blue) data. g, The composition of 
pathogenic bacteria in the S01 and S06 samples. h, The composition of detected 
pathogens in the sputum samples of patients with pneumonia using PROFIT-seq 
(top) and control data (bottom). The colours in g and h correspond to different 
target pathogens. Pneumonia and COVID-19 samples were named as P and S, 
respectively. Source numerical data are available in Source data.
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of the transcriptome. Notably, the principal component analysis of 
gene expression levels demonstrated that samples from the same 
biological groups were similar regardless of the sequencing strategy 
(P = 0.001, ANalysis Of SIMilarity (ANOSIM) test; Fig. 6d), indicating 
that the PROFIT-seq strategy was able to preserve the real biological 
diversity between different samples.

For immune receptor repertoire analysis, the T cell receptor 
(TCR) and B cell receptor (BCR) sequences were de novo assembled 
using TRUST4 (ref. 32) and annotated with the international Immu-
noGeneTics (IMGT) database33. As expected, the effective enrich-
ment of BCR and TCR reads (P = 1.53 × 10−5 to 0.014, Wilcoxon signed 
rank test) was clearly observed in the PROFIT-seq data (Fig. 6e and 
Extended Data Fig. 6b), whereas the percentage of both BCR and TCR 
reads was also significantly higher than that of canonical Illumina 
total RNA-seq data (P = 7.63 × 10−6, Wilcoxon signed rank test). As a 
result, a gradual decrease in diversity (measured by clonotypes per 
kilo-reads, CPK) (Fig. 6f) and increase in clonality of hypervariable 
complementarity-determining region 3 (CDR3) of BCRs (Fig. 6g) 
were observed in both PROFIT-seq and control data (P = 7.63 × 10−6, 
Kruskal‒Wallis H test), which was consistent with the reported deple-
tion of B cell diversity in colon cancer against adjacent non-cancerous 
samples34. To determine the specific BCR isotype that is related to the 
malignant transformation of polyps, the usage of different immuno-
globulin heavy-chain (IGH) isotypes was assessed. As shown in Fig. 6h, 
PROFIT-seq revealed a significant disturbance in IGHA2 (P = 0.028, 
Kruskal‒Wallis H test) and IGHG2 (P = 0.045, Kruskal‒Wallis H test), 
suggesting the switch of pathogenic microbiota during the polyp 
malignant transformation process35,36. Notably, the IGH isotypes and 
IGHV and IGHJ family usage observed in PROFIT-seq were successfully 
confirmed by Illumina RNA-seq data (Extended Data Fig. 6c,d). Finally, 
the recombination pattern of the V and J segments was investigated. 
Although the combination varied in different samples, the relative 
usage of the top-utilized combination was more centralized in the 
high-grade intraepithelial neoplasia groups (Extended Data Fig. 6e), 
consistent with the decreasing diversity of BCR in low- and high-grade 
intraepithelial neoplasia samples.

Taking advantage of the ability to capture the full spectrum of the 
transcriptome, we further investigated the microbiota composition 
during the transition of polyps to neoplasia (Fig. 6i). Overall, the occur-
rence of common intestinal microbiota was detected, and a reduced 

alpha diversity of the polyp microbiome, although not significant 
(P = 0.17, Kruskal‒Wallis H test), was observed in the PROFIT-seq data 
(Extended Data Fig. 6f). In particular, the abundance of Fusobacte-
rium, whose infection in colorectal cancer has been widely reported37, 
was significantly increased in high-grade intraepithelial neoplasia 
(P = 0.004, Dunn–Bonferroni post hoc test; Fig. 6k). Other colorec-
tal cancer-related gut bacteria, including Bacteroides, Firmicutes, 
Enterococcus, Escherichia, Proteobacteria and Streptococcus38–40, 
were also effectively captured in the PROFIT-seq data. Together, the 
reduced microbial diversity and changes in gut microbiota composi-
tion indicated dysbiosis of the healthy microbiome during neoplasia 
progression. It should be noted that several fusion transcripts were 
successfully detected in the PROFIT-seq data. For instance, the fusion of 
two protein-coding genes, PCNP and RPS18 (Extended Data Fig. 6f), was 
frequently observed in two low-grade and two high-grade IN samples, 
and this PCNP–RPS18 fusion event was also reported in the ChiTaRS 5.0 
database41. In summary, these results demonstrated the promising abil-
ity of PROFIT-seq to characterize the full spectrum of the transcriptome 
with polyadenylated and non-polyadenylated RNAs and to enrich target 
and unannotated transcripts in a programmable manner.

Discussion
In this study, we present the PROFIT-seq strategy for effective enrich-
ing of target transcripts while maintaining unbiased quantification 
of the whole transcriptome. PROFIT-seq utilizes combinatorial RT 
and RCA amplification (R2C2 protocol) for simultaneous profiling of 
polyadenylated, non-polyadenylated and circular transcripts, and pro-
vides a real-time and programmable approach for effectively enriching 
transcripts of interest. The in-depth performance evaluations demon-
strated the potential of PROFIT-seq in rapidly and accurately identify-
ing pathogens in pneumonia and COVID-19 clinical samples, as well as 
in effectively detecting complex transcriptome changes during the 
development of colorectal intraepithelial neoplasia.

The detection of specific transcripts is essential in clinical diag-
nostics, pathogen identification, variant detection and immune 
repertoire analysis. However, current targeted RNA-seq methods 
depend on complex experimental enrichment processes42–44, which 
limit their ability to simultaneously target different types of tran-
script. In addition, probe-based strategies1,2,4,45,46 and amplicon-based 
approaches3,47 rely on specific sequence panels to detect targets, 

Fig. 6 | Interaction of immune response and gut microbiome dysbiosis  
during polyp-to-intraepithelial neoplasia transformation. a, A summary of 
the sample collection sites and the sequencing strategy. A total of 18 colorectal 
polyp samples from three clinical stages were collected. All samples were 
sequenced using Illumina total RNA-seq and PROFIT-seq with and without 
enriching target panels, respectively. Adapted from Servier Medical Art by 
Servier under a Creative Commons license CC BY 4.0. b, The number of target 
genes that are significantly enriched (>2-fold) (orange), minorly enriched  
(1- to 2-fold) (yellow) or not enriched (grey). Only genes with more than five 
supporting reads in both control and adaptive sampling runs were included.  
c, The percentage of reads in filtered regions or unannotated transcripts, which 
includes reads that are discordantly mapped or unmapped to the reference 
genome. d, Principal component analysis representation of samples with 
different sequencing strategies. The colours represent clinical stages, and the 
shapes indicate sequencing strategies. The dashed circles correspond to the 
3 s.d. ellipses (P = 0.001, ANOSIM test). The P value of ANOSIM test is overlaid. 
e, The fraction of BCR reads identified by TRUST4. The bar colours represent 
Illumina total RNA-seq (grey), PROFIT-seq without enrichment (yellow) and 
PROFIT-seq with enrichment of the target panel (orange), and the background 
colours indicate different clinical stages. Significant difference between PROFIT-
seq and control (P = 1.53 × 10−5, Wilcoxon signed rank test). f, The diversity of BCR 
hypervariable CDR3 sequences measured by CPK individual CDR3 sequences 
in six inflammatory, five low-grade and seven high-grade polyp samples. In the 
control groups, significant differences among stages were observed (P = 0.036, 
Kruskal–Wallis H test) with Dunn’s post hoc test revealing significant changes 

between inflammatory and high-grade intraepithelial neoplasia (IN) (P = 0.027), 
low-grade IN and high-grade IN (P = 0.030). In the PROFIT-seq groups, significant 
differences among stages (P = 0.017, Kruskal–Wallis H test) were also observed, 
with Dunn’s post hoc test showing significant changes between inflammatory 
and high-grade CIN (P = 0.011) and low-grade CIN and high-grade CIN (P = 0.021). 
g, The diversity of BCR hypervariable CDR3 sequences measured by clonality 
in six inflammatory, five low-grade and seven high-grade polyp samples. In the 
control groups, significant differences among stages (P = 0.024, Kruskal–Wallis 
H test) with significant changes between inflammatory and low-grade CIN 
(P = 0.006, Dunn’s post hoc test) were observed. In the PROFIT-seq groups, 
significant differences among stages (P = 0.022, Kruskal–Wallis H test) with 
significant changes between inflammatory and low-grade CIN (P = 0.006, 
Dunn’s post hoc test) were also observed. h, The usage of immunoglobulin (IG) 
heavy-chain isotypes in the PROFIT-seq data of 18 polyp samples. The colours 
represent different isotypes of the IG heavy chain. i, A heat tree representation 
of detected microbiotas. The colours represent the normalized change level of 
bacterial taxa at different ranks in 18 samples measured using the test statistic of 
Kruskal‒Wallis H test. j, A dot plot representation of the abundance of pathogens 
related to colorectal cancer. The colours within each dot represent normalized 
abundance across all samples. For box plots, the middle lines represent the 
median, and the lower and upper bounds represent the first and third quartiles. 
The upper and lower whiskers represent the limits of 1.5 inner quantile ranges, 
and points outside this range are plotted as outliers. Source numerical data are 
available in Source data.
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which are ineffective for enriching pathogens without clearly defined 
targets. Furthermore, the rich information of the full transcriptome is 
permanently lost in these constructed libraries, introducing quanti-
fication bias and preventing the integration of targeted RNA-seq data 
across different targets.

To this end, PROFIT-seq overcomes these barriers in transcrip-
tomics by enabling flexible and effective target enrichment while 

maintaining unbiased quantification. Utilizing a combinatorial RT 
strategy and nanopore adaptive sequencing, PROFIT-seq provides 
an easy-to-use assay for enriching target transcripts across various 
types without the need for complex experimental enrichment pro-
cesses. Based on the ONT ReadUntil interface6, PROFIT-seq provides 
a user-friendly web interface that allows simplified control over time 
segments, pore channels, demultiplexed barcodes and target genes. 
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This setup enables the simultaneous, programmable enrichment of 
multiple transcript targets.

One of the key limitations of current long-read sequencing tech-
niques is their reliance on oligo(dT)-based RT, which preferentially cap-
tures polyadenylated mRNAs and neglects crucial non-polyadenylated 
transcripts, including lncRNAs, circRNAs and pathogen RNAs lacking 
poly(A) tails. Effective detection of these non-polyadenylated tran-
scripts has emerged as a critical aspect of transcriptome analysis48–51. 
Based on our previous efforts in detecting circRNAs14, PROFIT-seq 
adapts a combinatorial RT strategy using double-stranded oligo(dT) 
and random primers as well as ssN, which enables the simultaneous 
detection of both non-polyadenylated and circular transcripts without 
biasing the expression levels of dominant mRNAs. Comprehensive eval-
uation using the HeLa transcriptome demonstrated that PROFIT-seq 
effectively captures the full spectrum of the transcriptome with unbi-
ased quantification.

Recent advances in nanopore adaptive genomic sequencing have 
shown great potential for enriching target genomic regions. However, 
the efficiency of adaptive transcriptome sequencing using the cur-
rent RNA-seq protocol is often limited by the relatively short length 
of RNA molecules. PROFIT-seq addresses this by incorporating the 
RCA amplification assay to generate concatemeric reads containing 
multiple passes of a single cDNA template. The extended length of 
RCA-amplified cDNAs provides the basis for generating a discrimi-
native difference in the length of fully sequenced transcripts and 
rejected fragments, thereby enhancing enrichment efficiency. Rec-
ognizing the potential for RCA to produce chimeric artefacts52, we 
implemented a computational filter based on subread length and 
similarity to minimize these artefacts in the consensus sequences 
(Extended Data Fig. 3g). Extensive evaluations using both simulated 
data and real clinical samples confirmed that PROFIT-seq effectively 
enriches target mRNA and pathogen gene panels. For example, in the 
diagnosis of SARS-CoV-2 infection, PROFIT-seq reduced sequencing 
time by ~75% or achieved a 3.3-fold increase in yield, while maintaining 
high accuracy and sensitivity in detecting key S-protein mutations. 
In addition, PROFIT-seq successfully profiled immune repertoire 
sequences in colorectal polyp samples, further demonstrating its 
accuracy and applicability in the field of rapid pathogen surveillance 
and transcriptome-based clinical applications.

An important advantage of PROFIT-seq is its ability to achieve 
unbiased quantification of both targeted and untargeted transcripts. 
By leveraging adaptive sequencing methods, which enrich target tran-
scripts while recording all sequenced molecules, we employed the 
EM algorithm to integrate both full-length and partially recovered 
fragments, thereby obtaining corrected expression values. Compara-
tive analyses with unselected control runs and Illumina total RNA-seq 
showed a high correlation in quantification results, preserving the 
true biological diversity between sample groups and underscoring 
the utility of PROFIT-seq.

In summary, PROFIT-seq effectively captures polyadenylated 
transcriptomes while enabling targeted enrichment or depletion of 
specific RNAs. Its capabilities make it a valuable tool for rapid diagno-
sis, targeted RNA-seq and transcriptome-based clinical applications. 
PROFIT-seq can be scaled with high-throughput sequencing platforms 
such as PromethION to increase yield, further enhancing its versatility 
across a range of clinical diagnostic scenarios. This method will pro-
vide critical insights into the complex interactions between host and 
pathogen transcriptomes during disease development.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code 
availability are available at https://doi.org/10.1038/s41556-024-01537-1.
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Methods
Ethics statement
The 16 sputum and 18 colorectal polyp samples were collected from the 
China–Japan Union Hospital of Jilin University. The clinical information 
of the patients is presented in Supplementary Table 1. The clinico-
pathological features of colorectal polyp samples were confirmed by 
pathologists. The study was approved by the Ethics Committee of the 
China–Japan Union Hospital of Jilin University (no. 20220628006), 
Informed consent was obtained from all donors before enrolling in the 
study. All sample collection processes were part of routine diagnostic or 
surgical procedures, and no patients received financial compensation.

Cell culture
HeLa cells (#CCL-2, ATCC) were cultured in Dulbecco’s Modified Eagle 
Medium (Gibco) containing 10% foetal bovine serum (Gibco) at 37 °C 
in an incubator containing 5% CO2.

RNA extraction and ribosomal RNA depletion
Total RNA was extracted using TRIzol-LS (Invitrogen, 10296010) for 
sputum samples and TRIzol (Invitrogen, 15596018) for HeLa cells and 
polyp samples. The integrity of RNAs was confirmed using an Agilent 
5200 Bioanalyzer. Ribosomal RNAs were removed using the KAPA Ribo-
Erase Kit Human/Mouse/Rat (KAPA Biosystems, KK8481) according to 
the manufacturer’s instructions.

Combinatorial RT
The extracted RNA was reverse transcribed using the SMARTer PCR 
cDNA Synthesis Kit (Clontech, 634925 and 634926) with minor modi-
fications. To capture both polyadenylated and non-polyadenylated 
RNAs, three types of RT oligo, that is, (1) double-stranded oligo(dT) 
(RT.dT.ds, oligos: 5′-CTACACGACGCTCTTCCGATCTTTTTTTTTTTTT 
TTTTTTTTTVN-3′ and 5′-AGATCGGAAGAGCGTCGTGTAG-3′), (2) dsN 
(RT.N6.ds, oligos: 5′-CTACACGACGCTCTTCCGATCTNNNNNN-3′ and 
5′-AGATCGGAAGAGCGTCGTGTAG-3′) and (3) ssN (RT.N6.ss, oligo: 
5′-CTACACGACGCTCTTCCGATCTNNNNNN-3′), were used.

Here, denatured RNA was first incubated to RT.dT.ds oligos with 
NEBNext Quick Ligation Module (NEB, E5056) for 10 min at 25 °C in a 
15 μl mixture containing 10 μl of RNA, 3 μl of 10× NEBNext Quick Liga-
tion Reaction Buffer, 0.5 μl of RT.dT.ds oligos (1.4 µM) and 1.5 μl of T4 
DNA Ligase. Then, 0.5 μl of RT.N6.ds oligos (1.4 µM) was added to the 
mixture and incubated for another 10 min at 25 °C. Subsequently, a 
mixture containing 10 μl of nuclease-free water, 8 μl of 5× first-strand 
buffer, 2 μl of dithiothreitol (100 mM), 2 μl of dNTP (10 mM), 1 μl of 
SMARTer II A oligo (12 μM), 1 μl of RNase inhibitor and 1 μl of SMARTer 
reverse transcriptase (100 U) was added to the samples followed by 
incubation at 42 °C for 60 min. Next, another 0.5 μl of RT.N6.ss (50 µM) 
was added to the reaction and incubated at 25 °C for 10 min, 42 °C for 
60 min and then 70 °C for 10 min. The first strand of cDNA was puri-
fied with Agencourt AMPure XP magnetic beads (Beckman, A63880). 
To obtain sufficient cDNA product, PCR amplification was performed 
using 5 μl of cDNA with LongAmp Taq 2× Master Mix (NEB, M0287) 
and both the forward (5′-AAGCAGTGGTATCAACGCAGAGTAC-3′) and 
reverse primers (5′-CTACACGACGCTCTTCCGATCT-3′) (95 °C for 3 min; 
followed by 14–15 cycles of 95 °C for 10 s, 60 °C for 20 s and 65 °C for 
60 s; with a final extension at 65 °C for 1 min). The PCR product was 
purified with AMPure XP beads with a 0.8× bead-to-sample ratio. For 
sputum samples, only RT.N6.ds and RT.N6.ss were added to capture 
bacterial RNAs that lack poly(A) tails, and 18–20 cycles of PCR amplifica-
tion were performed to obtain sufficient cDNA product.

Indexed combinatorial RT
To evaluate the effect of individual primers, different index  
sequences were added to three types of RT oligo: (1) double-stranded 
oligo(dT) (RT.dT.ds, oligos: 5′-CTACACGACGCTCTTCCGATCTA 
ACGTGATCGCTGATCTTTTTT TTTTTTTTTTTTTTTVN-3′ and 5′-GAT 

CAGCGATCACGT TAGATCGGAAGAG CGTCGTGTAG-3′),  (2) 
dsN (RT.N6.ds, oligos: 5′-CTACACGACGCTCTTCCGATCTCA 
GATCTGAGTACAAGNNNNNN-3′ and 5′-CTTGTACTCAGTCTGAGATCG 
GAAGAGCGTCGTGTAG-3′) and (3) ssN (RT.N6.ss, oligo: 5′-CTACACGA 
CGCTCTTCCGATCTGATAGACACAATGGAANNNNNN-3′). Then, com-
binatorial RT was performed as previously described. The indexed 
combinatorial libraries were constructed using the SQK-LSK114 liga-
tion sequencing kit and sequenced using R10.4.1 (FLO-PRO114M) flow 
cell on an ONT PromethION 24 sequencer from Beijing Huigene Bio-
technology. The R10.4.1 data were basecalled using dorado 0.7.2 with 
dna_r10.4.1_e8.2_400bps_sup@v4.1.0 model. The products of each 
primer were identified by aligning the index sequences to the front 
and end 150 bp sequences.

Splint-based circularization
The cDNA libraries were constructed using the R2C2 protocol13. 
Briefly, the amplified cDNA was circularized with the DNA splint 
using the 2× NEBuilder HIFI DNA Assembly Master Mix (NEB, 
E2621S). First, ~100 ng of cDNA was mixed with 100 ng of DNA splint 
(5′-AGATCGGAAGAGCGTCGTGTAGTGAGGCTGATGAGTTCCAT 
ANNNNNTATATNNNNNATCACTACTTAGTTTTTTGATAGCTTCAA 
GCCAGAGTTGTCTTTTTCTCTTTGCTGGCAGTAAAAGTATTGTG-
TACCTTTTGCTGGGTCAGGTTGTTCTTTAGGAGGAGTAAAAGGAT 
CAAATGCACTAANNNNNTATATNNNNNGCGATCGAAAATATCCCTT 
TAAGCAGTGGTATCAACGCAGAG-3′). The total volume of cDNA and 
DNA splint was adjusted to 10 μl, and the same volume of NEBuilder 
HiFi DNA Assembly Master Mix was added. The circularization reaction 
was incubated at 50 °C for 60 min. Non-circularized DNA was digested 
using 0.3 μl of Exonuclease III (NEB, M0206L) and 1 μl of Exonuclease 
I (NEB, M0293L) at 37 °C for 60 min. Circularized DNA was purified 
using AMPure XP beads and eluted in 20 μl of elution buffer (10 mM 
Tris, pH 8.0).

RCA and nanopore sequencing library construction
Circularized DNA was amplified using RCA in a 4 × 50 μl reaction 
containing 5 μl of 10× Phi29 buffer, 2.5 μl of 10 mM dNTP, 1 μl of 
exonuclease-resistant random hexamers NNNN*N*N (100 μM) with two 
3′-terminal phosphorothioate modifications, 0.5 μl of bovine serum 
albumin, 2 μl of DNA, 29 μl of ultrapure water and 1 μl of Phi29 DNA 
polymerase (NEB, M0269L). Reactions were incubated at 30 °C over-
night. Every two reactions were pooled, and DNA was extracted using 
AMPure XP beads with a 0.5 bead-to-sample ratio. For debranching of 
the RCA products, the beads were washed two times with 75% ethanol, 
and T7 Endonuclease I (NEB: M0302L) reaction mix containing 52 μl 
of ultrapure water, 6 μl of NEB buffer 2 and 2 μl of T7 Endonuclease I 
(10 units μl−1) was added to the beads. The beads were resuspended and 
incubated on a thermal shaker at 37 °C for 40 min under constant agita-
tion at 1,800 rpm to debranch the RCA product. The beads were then 
placed on a magnet, and the DNA in the supernatant was extracted again 
using AMPure XP beads with a 0.5 bead-to-sample ratio. DNA fragments 
with more than 7 kb were size-selected on a BluePippin system (0.75% 
(w/v) agarose gel cassette, dye-free, S1 marker, low range, 1–10 kb).

The nanopore sequencing library was constructed follow-
ing the ligation sequencing gDNA—native barcoding (LSK-109 with 
EXP-NBD104/114) protocol. All constructed libraries were sequenced 
with FLO-MIN106 (R9.4.1) flow cells using the ONT MinION device.

Programmable sequencing using PROFIT-seq
The MinKNOW (v21.11.9) interface and PROFIT-seq program were 
used to control the sequencing process. PROFIT-seq requires the path 
to reference sequences as input and will start a flask web server for 
input enrichment jobs and monitor the sequencing process. Users are 
allowed to specify parameters including manipulation mode (enrich-
ment, depletion or balancing coverage), job name, start time, job 
duration, channel range, barcode names and target regions or gene 
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names directly. In addition, users can upload a configuration file for 
batch job submission. Manipulation of reads that are multi-mapped 
or unmapped to the reference sequences can also be specified in the 
configuration file. After submission of each enrichment job, the enrich-
ment targets and sequencing progress will be presented on the web-
page. The start and termination of the enriching program can also be 
directly controlled from the webpage.

During the sequencing process, the PROFIT-seq program uses 
the read-until6 (v3.0.0) package to collect chunk data with an inter-
val of 0.4 s. Then, collected raw data were basecalled in real time 
using the R9.4 fast basecalling model with guppy server (v5.1.15) and 
ont-pyguppy-client-lib (v5.1.15). The basecalled sequences were aligned 
to the reference genome using mappy (v2.17), a Python interface to min-
imap2 (ref. 53). Then, PROFIT-seq determines whether each sequence 
should be continued to be sequenced or rejected according to the 
time segment, channel number, demultiplexed barcode and aligned 
region provided in the job configuration, and the status of each pore 
is manipulated using the ReadUntilClient function. The information 
and decision of each basecalled chunk data point are recorded in the 
MinKNOW output directory. In this study, all sequencing runs were 
performed on a Dell Precision T5820 desktop workstation with an Intel 
Xeon W-2133 (six-core) processor, 64 G of random-access memory and 
one GeForce RTX 2080 graphic card.

Simulation data
To simulate the sequencing process, nanopore bulk fast5 of genomic 
DNA (http://s3.amazonaws.com/nanopore-human-wgs/rel6/Multi 
Fast5Tars/FAF14035-3976726082_Multi_Fast5.tar) and transcriptome 
(https://s3.amazonaws.com/nanopore-human-wgs/rna/bulkFiles/ 
PLSP61583_20171106_FAH20412_MN18458_sequencing_run_Notts_ 
cDNA_Run1_96243.fast5) data were downloaded from the Oxford Nano-
pore Human Reference Datasets54,55 (https://github.com/nanopore- 
wgs-consortium/NA12878). For simulation of the PROFIT-seq library, 
we first constructed a PROFIT-seq library using the combinatorial RT 
and RCA with HeLa RNAs, and then the library was sequenced without 
adaptive sequencing (FAR58149) as control. During the process, all 
current signals were recorded in a bulk fast5 file, which could be used 
for simulation using the playback function of the MinKNOW software.

In the playback process, the continuous raw signal of a complete 
read is split into two small reads when an ‘unblock’ signal is received, 
so that the next read still contains similar sequence to the rejected 
reads. In real nanopore adaptive sequencing runs, the next read should 
be randomly selected. Thus, only completed reads (end reason ‘signal 
positive’ in older versions of MinKNOW or ‘read completed’ in the latest 
version) were kept for further analysis.

PROFIT-seq data analysis
The raw nanopore sequencing data were basecalled and demultiplexed 
using ont-guppy (v5.1.15) using the R9.4 high accuracy model. The 
sequencing adapters were trimmed from basecalled reads using a 
modified version of Porechop (https://github.com/artic-network/ 
Porechop). Next, the Parasail56 library was used to align splint adapters 
and determine the boundaries of RNA sequences, whereas sequences 
with intact 5′ and 3′ flanking adapters were determined as full-length 
RNAs. The consensus sequence of captured RNA was computed using 
the adaptive banded partial order alignment57. The consensus sequence 
of splint adapters was also calculated to identify unique molecular 
identifier sequences for each consensus sequences. To mitigate chi-
meric RCA artefacts, all subreads’ lengths were required to fall within 
80–120% of the consensus sequence, with subread similarity exceeding 
50%. Finally, the consensus sequence was oriented according to the 
strandness of the detected adapter sequence, and the poly(A) tails were 
trimmed to reduce the false-positive alignment rate of genomic A-rich 
regions. Finally, the overlap between consensus sequences was iden-
tified using minimap2 with the ‘-x ava-ont’ options. Then, consensus 

reads with >80% consensus sequence overlaps and >80% unique 
molecular identifier similarity were considered as RCA duplicates 
and removed from downstream analysis. The deduplicated consensus 
sequences were referred to as ‘consensus reads’, and nanopore reads 
that do not contain more than one complete pass of cDNA are removed 
from most downstream analyses except for whole-transcriptome 
quantification.

For nanopore sequencing data analysis, the GRCh38.p13 human 
reference genome and GENCODE18 Release 37 annotation were down-
loaded from the GENCODE project. The cleaned reads were aligned to 
the reference genome using minimap2 (ref. 53) (v2.17) with the ‘-x splice’ 
option, and StringTie2 (ref. 24) (v2.1.5) was applied for full-length 
transcript reconstruction. Considering that partially sequenced reads 
can better represent the relative abundance of non-target transcripts, 
PROFIT-seq uses a modified EM algorithm by taking into account par-
tially sequenced reads to estimate the real abundance of all transcripts. 
For a panel of n target transcripts, the relative expression level pi of 
transcript  is estimated as

pi =
si,fl

∑n

i=1 si,fl
,

where si,fl represents the number of full-length reads assigned to iso-
form  using Salmon25 (v0.14.0). Then, the maximization step is per-
formed by combining the assigned full-length reads and partially 
sequenced reads. The number of final assigned reads si  for target 
transcript  is estimated by

si = pi × (
n

∑
i=1

si,fl+nonfl) ,

where si,fl+nonfl represents the total number of assigned full-length and 
partial reads. Finally, the expression level of target transcripts is meas-
ured by the counts per million as

CPMi = 1,000,000 × si

∑n

i=1 si,fl+nonfl +∑m

j=1 s j,non−fl
,

where s j represents the number of partial reads assigned to a non-target 
transcript j. Similarly, the expression values of non-target transcripts 
are calculated using

CPMj = 1,000,000 ×
s j,nonfl

∑n

i=1 si,fl+nonfl +∑m

j=1 s j,non−fl
.

In addition, FusionSeeker58 (v1.0.1) was used to identify fusion 
transcripts from the alignment bam. For circRNA analysis, CIRI-long14 
(v1.1.0) was employed to identify circRNAs from the consensus reads. 
For estimation of read accuracy, consensus reads were aligned to the 
reference genome using minimap2 with the option ‘-x splice--cs’, and 
the per read accuracy was calculated from the reported cs string. For 
RCA chimeric analyses, subreads for called consensus sequences were 
extracted and aligned to the reference genome using minimap2 with 
option ‘-x splice’. The RCA chimeric reads were determined if subreads 
from the same RCA concatemers were aligned to different genomic 
regions with a distance larger than 1 kb.

To estimate the abundance of microbiota in sputum and polyp 
samples, reads that could not be mapped to the reference genome 
were extracted using the SAMtools59 fastq command with the ‘-f 4’ 
option. The unmapped reads were aligned against the NCBI NR data-
base using the frame-shift alignment mode of DIAMOND29 (v2.0.11) 
with the 1 × 10−6 e-value cutoff. In addition, bacterial reads were also 
identified using Kraken2 (ref. 60) (v2.0.9) with a confidence level of 
0.05. For SARS-CoV-2, the NC_045512.2 reference genome61 was down-
loaded from the NCBI database, and cleaned reads were aligned to the 
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SARS-CoV-2 genome as described above. Finally, bcftools59 was used 
for variant calling, and mutations with >80% allele frequency were kept 
and annotated using the ANNOVAR62 program.

For analysis of the immune receptor repertoire, TRUST4 (ref. 32) 
(v1.0.7) was used to identify TCR and BCR sequences. The reference 
immunoglobulin (IG) and TCR sequences were downloaded from the 
international IMGT information system33.

Illumina RNA-seq and data analysis
To construct the Illumina RNA-seq libraries, total RNA was extracted 
as described above. The total RNAs were shipped to Beijing Annoroad 
Gene Technology and sequenced using an Illumina NovaSeq 6000 
sequencer according to the manufacturer’s instructions. In summary, 
a total of 854,012,543 paired-end 150 bp reads were generated with an 
average size of 14.23 Gb of data for each library.

For analysis of Illumina RNA-seq data, raw sequencing reads were 
assessed using FastQC (v0.11.9). Quality control was performed using 
TrimGalore (v0.6.6) with the ‘--stringency 6’ option. The cleaned reads 
were mapped to the GRCh38 reference genome using HISAT63 (v2.1.0) 
with default parameters. Then, StringTie2 (ref. 24) and Salmon25 were 
also employed for transcript assembly and quantification. All com-
parable analysis of Illumina libraries was performed at the gene level. 
The bacterial reads were identified using kraken2 (ref. 60) (v2.0.9) with 
a confidence level of 0.05. The TRUST4 (ref. 32) (v1.0.7) pipeline was 
used to identify TCR and BCR sequences as described for the nanopore 
sequencing data analysis.

Statistics and reproducibility
For evaluation of the combinatorial RT strategy, two experimental 
replicates are performed to ensure the reproducibility of results. For 
the assessment of PROFIT-seq protocol, two biological replicates were 
conducted to ensure the reproducibility of evaluation results. A total 
of 16 sputum samples (8 patients with pneumonia and 8 patients with 
COVID-19) and 18 colorectal polyp samples (6 inflammatory polyps, 5 
low-grade intraepithelial neoplasia and 7 high-grade intraepithelial 
neoplasia) were collected to ensure the reproducibility of results and 
demonstrate the application of PROFIT-seq under different scenarios. 
No statistical method was used to pre-determine sample size, and no 
data were excluded from the analyses.

Protocol
A step-by-step protocol for the experimental and computational 
procedure to perform PROFIT-seq can be found in the protocols.io 
repository64.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The Illumina RNA-seq and PROFIT-seq data generated in this study have 
been deposited in the Genome Sequence Archive in National Genomics 
Data Center65, China National Center for Bioinformation (GSA-Human: 
HRA003930) and are publicly accessible at https://bigd.big.ac.cn/ 
gsa-human. The generated HeLa RNA-seq data are available in the SRA 
database under accession number PRJNA1133093. Details of these 
datasets are included in Methods and Supplementary Tables 1 and 2. 
Source data have been deposited in Zenodo at https://doi.org/10.5281/ 
zenodo.12697811 (ref. 66). The human reference genome GRCh38.p13 
(GENCODE Release 37) was downloaded from the GENCODE18 project 
(https://gencodegenes.org). The NC_045512.2 SARS-CoV-2 reference 
genome61 was downloaded from the NCBI database. The reference 
immunoglobulin and TCR sequences were downloaded from the inter-
national IMGT information system33. The tumour-related genes, lncR-
NAs and circRNAs were downloaded from COSMIC20, lnCAR21, CSCD2 

(ref. 23) and MiOncoCirc22, respectively. The previously published 
datasets including poly(A) and total HeLa transcriptome (SRR3476958, 
SRR3479116, SRR1637089 and SRR1637090)15, HeLa direct RNA-seq 
(SRR24298524, SRR24298525 and SRR24298526)17 and poly(A) plus/
minus RNA-seq (SRR067391, SRR067392, SRR067393, SRR067394, 
SRR067395 and SRR067396)16 were downloaded from the SRA database 
and re-analysed in this study. Bulk fast5 of genomic DNA (FAF14035) 
and cDNA (MN18458) sequencing runs were downloaded from the 
Oxford Nanopore Human Reference Datasets (https://github.com/ 
nanopore-wgs-consortium/NA12878)54,55. Source data are provided 
with this paper.

Code availability
PROFIT-seq is implemented in Python and can be freely accessed on 
GitHub at https://github.com/bioinfo-biols/PROFIT-seq. The software 
is packaged with sample datasets and has been extensively tested with 
the latest version of MinKNOW (v23.04.6) on Linux. The detailed soft-
ware installation guide has been included in our GitHub repository at 
https://github.com/bioinfo-biols/PROFIT-seq/wiki.
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TOML job configuration

Programmable control

[[jobs]]
name = "unblock job"
time = [0, 60]
ch = [1, 256]
bc = "all"
target = [
  {region = ["chrM", "0", "16569"], action = "unblock"},
  {region = "miss", action = "stop_receiving"},
  {region = "unmapped", action = "wait"},
]

[[jobs]]
name = "balance job"
time = [60, 120]
ch = [1, 512]
bc = "barcode01,barcode02"
target = [
  {region = ["chr1", "0", "248956422"], action = "balance"},
  {region = ["chr2", "0", "242193529"], action = "balance"},
  {region = ["chr3", "0", "198295559"], action = "balance"},
  {region = ["chr4", "0", "190214555"], action = "balance"},
  {region = ["chr5", "0", "181538259"], action = "balance"},
  {region = "unmapped", action = "unblock"},
  {region = "miss", action = "unblock"}
]
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Extended Data Fig. 1 | Functions of PROFIT-seq. a, Example of a TOML-
formatted configuration file for batch job submission. b, Schematic 
representation of chunk data processing. c, PROFIT-seq provides flexible 
functions to customize the sequencing duration, channel number, 
demultiplexed barcode, and aligned region for each individual task. d, Length 
of basecalled sequences (left), mapping rate (middle), and number of reads with 
different end reasons (right). All molecules were set to be rejected, and runs were 
simulated with different chunk acquisition intervals ranging from 0.1 to 1.0 s. 

Colors in the right panel represent different end reasons, including adaptive 
sampling voltage reversal (purple), read completed (green), device changed mux 
(blue), read became blocked (red) and unblock voltage reversal (orange). The 
middle lines represent the median, and the lower and upper bounds represent 
the first and third quartiles, respectively. The upper and lower whiskers represent 
the limits of 1.5 inner quantile ranges, and points outside this range are plotted as 
outliers. Source numerical data are available in source data.
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Extended Data Fig. 2 | Combinatorial RT enables effective capture of the 
full transcriptome spectrum. a, Percentage of reads aligned to different 
genomic regions. Colors represent different genomic regions according to the 
GENCODE v37 annotation. b, Percentage of ribosomal RNA reads in PROFIT-seq 
and oligo(dT) data. c, Bar plots indicate the fraction of reads from non-poly(A) 
containing transcript in oligo(dT) and random primed cDNAs in HeLa cells. 
Colors indicate oligo(dT) (orange) and random primed (blue) reads, respectively. 

d, Proportion of reads aligned to transcripts of different biotypes according 
to the GENCODE annotation as a supplementary to Fig. 2d. Colors represent 
PROFIT-seq (red) and oligo(dT) (grey) libraries respectively. e, Log scaled  
gene expression levels in oligo(dT), combinatorial RT, and random primed  
cDNA libraries. The x-axis represents the log scaled gene expression levels  
from Illumina total RNA-seq dataset. Source numerical data are available in 
source data.
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Extended Data Fig. 6 | Changes of the immune repertoire in inflammatory 
polyps and low- or high-grade IN samples. a, Expression level of target genes in 
adaptive sampling runs and unmanipulated controls. The x and y axis represent 
the expression level of target genes, the dashed lines represent the threshold 
of five supporting reads in control and adaptive sampling runs, respectively. 
P < 0.001, Wilcoxon rank sum test. b, Fraction of T cell receptor (TCR) reads 
identified by TRUST4. Bar colors represent Illumina total RNA-seq (gray), 
PROFIT-seq without enriching (yellow), and PROFIT-seq enriching target panel 
(orange), and background colors indicate different clinical stages. Significant 
difference between PROFIT-seq and control, P = 0.014, Wilcoxon signed rank 
test. c, Usage of IG heavy chain isotypes in Illumina total RNA-seq of 18 polyp 

samples. Colors represent different isotypes of IG heavy chains. d, Utilization of 
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middle lines represent the median and the lower and upper bounds represent 
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of 1.5 inner quantile ranges, and points outside this range are plotted as outliers. 
e, Heatmap presentation of VJ combinations in all samples. Colors indicate the 
relative utilization values normalized across 18 samples. f, Alpha diversity of 
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RPS18 fusion event. The supporting reads are indicated below the gene structure. 
Source numerical data are available in source data.
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