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CIRI-Deep Enables Single-Cell and Spatial Transcriptomic
Analysis of Circular RNAs with Deep Learning

Zihan Zhou, Jinyang Zhang, Xin Zheng, Zhicheng Pan, Fangqing Zhao,* and Yuan Gao*

Circular RNAs (circRNAs) are a crucial yet relatively unexplored class of
transcripts known for their tissue- and cell-type-specific expression patterns.
Despite the advances in single-cell and spatial transcriptomics, these
technologies face difficulties in effectively profiling circRNAs due to inherent
limitations in circRNA sequencing efficiency. To address this gap, a deep
learning model, CIRI-deep, is presented for comprehensive prediction of
circRNA regulation on diverse types of RNA-seq data. CIRI-deep is trained on
an extensive dataset of 25 million high-confidence circRNA regulation events
and achieved high performances on both test and leave-out data, ensuring its
accuracy in inferring differential events from RNA-seq data. It is demonstrated
that CIRI-deep and its adapted version enable various circRNA analyses,
including cluster- or region-specific circRNA detection, BSJ ratio map
visualization, and trans and cis feature importance evaluation. Collectively,
CIRI-deep’s adaptability extends to all major types of RNA-seq datasets
including single-cell and spatial transcriptomic data, which will undoubtedly
broaden the horizons of circRNA research.

1. Introduction

Circular RNAs (circRNAs) are a type of RNA molecules gen-
erated through the covalent ligation of a downstream 5′ splice
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site (donor site) and an upstream 3′ splice
site (acceptor site), a process known as
back-splicing.[1] CircRNAs are widely ex-
pressed in high diversity across various
species and tissues and have been proved
to function as microRNA decoys,[1a,2]

protein scaffolds and protein encoders.[3]

As critical modulators of various bio-
logical processes, circRNAs have been
reported to be precisely regulated and in-
volved in cell cycle progression, epithelial-
mesenchymal transition, tissue develop-
ment and tumor progression.[3a,4] The
production of circRNAs occurs through the
spliceosome-mediated process, typically
requiring canonical splicing signals for
exon circularization.[5] The biogenesis of
circRNA is regulated during splicing and
involves both cis elements and trans factors.
For example, studies have shown that Alu
or complementary sequences in flanking
introns promote back-splicing,[4a,6] and

RNA binding proteins (RBPs), such as QKI and HNRNPL,[4a,7]

also affect circRNA biogenesis by binding to flanking introns
and bridging distal splicing sites. Meanwhile, back-splicing com-
petes with and interacts with canonical splicing. Enhanced dis-
tal splicing signals promote exon inclusion in linear transcripts,
consequently impeding circRNA biogenesis,[8] whereas several
instances of back-splicing events have been reported to facilitate
exon skipping.[9]

Similar to the commonly used percent spliced in (PSI) value
for alternative splicing, the ratio of back-splicing junction (BSJ)
reads to all related reads at the junction is calculated in circRNA
analysis.[10] This junction ratio serves as a quantitative measure
to assess the regulatory relationship and splicing preference be-
tween back-splicing and canonical splicing. Accurate detection
and quantification of circRNAs and their junction ratio rely on
the identification of BSJ reads.[11] However, circRNAs are often
expressed at relatively low abundance compared to their linear
counterparts,[12] and existing circRNA analysis tools vary widely
in sensitivity for different types of RNA-seq data and are typi-
cally insensitive for samples with limited sequencing depth.[13]

For example, circRNAs are largely depleted by the prevalent
poly(A) selection step in cDNA library construction due to the
lack of polyadenylated tails, which hinders circRNA detection in
most publicly available RNA-seq datasets. Recent advancements
in single-cell RNA-seq (scRNA-seq) technology have revolution-
ized the study of cellular heterogeneity, cell lineage commit-
ment, and the tumor microenvironment.[14] Several studies have
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revealed the tissue- and development-stage-specific expression of
circRNAs,[2b,15] while limited studies have explored circRNA het-
erogeneity at the single-cell level.[16] This limitation arises pri-
marily from the inability to detect and quantify circRNAs in low-
depth and poly(A) selected 3′ or 5′ end single-cell data. Similar
constraints also impede the investigation of spatial patterns of cir-
cRNA expression using spatial transcriptomic data. Although re-
cent studies have enabled effective detection of circRNAs through
optimized library construction protocols,[17] there is an urgent
need to develop efficient method for exploring circRNA using the
enormous number of publicly available RNA-seq datasets.

The integration of deep learning methods has emerged as a
promising approach to address the challenges associated with
modeling multicellular complexity, tissue specificity and splicing
patterns.[18] Notably, several splice code-based models have suc-
cessfully predicted tissue-specific splicing regulation by estimat-
ing the probability of differential splicing between tissues.[18c–f]

For example, DARTS has been proven valuable for enhancing
splicing analysis,[18g] particularly in low-depth sequencing data.
Motivated by the success of machine learning in splicing, sev-
eral studies have focused on modeling back-splicing events us-
ing relative sequence information, such as DeepCirCode and
CircDeep,[19] which demonstrated the potential predictability of
BSJ by distinguishing genome sequences with circRNA forma-
tion potential from others. However, these models are not appli-
cable to predicting circRNA regulation across tissues or samples
as the interaction between genomic elements and splicing reg-
ulator were not considered. Therefore, the precise prediction of
circRNA regulation still remains unresolved.

Here, we developed a deep learning model, CIRI-deep, which
provides a BSJ-read-independent approach for predicting cir-
cRNA regulation between biological samples using total or
poly(A) RNA-seq data. The model was trained on a comprehen-
sive dataset consisting of over 25 million high-confidence differ-
entially spliced or unchanged circRNA events across 397 human
tissue samples. By combining both cis and trans features related
to circRNA biogenesis regulation, the model achieved high ac-
curacy when evaluated on independent datasets. Moreover, we
demonstrated a significant improvement in the analysis of differ-
entially spliced circRNAs, particularly when applied to samples
with extremely low sequencing depth. To gain insights into the
importance of individual features in predicting sample-specific
circRNA regulation, we employed an adapted integrated gradi-
ents method that enabled us to identify the contribution of cis
and trans feature separately. When applied to single-cell and spa-
tial transcriptomic datasets where BSJ-read information was un-
available, CIRI-deep model provided valuable findings regarding
the cell type and spatial heterogeneity of circRNAs that cannot be
directly discerned from the original datasets alone. Overall, CIRI-
deep provides a new solution for regulated circRNA inference in
low-depth or poly(A) selected data, which largely broadens the
horizon of circRNA research.

2. Results

2.1. Overview of the CIRI-Deep Models and Data Collection

Total RNA-seq is commonly used for circRNA detection, which
has an advantage over poly(A) selected RNA-seq for comprehen-

sive sequencing of both circRNAs and their linear counterparts.
To obtain unbiased training data for our deep neural network
model, we first collected total RNA-seq data from 571 human
tissue samples or cell lines from RNA Atlas and circAtlas,[2b,20]

and applied a read count threshold of 100 million (Figure S1A,
Supporting Information) to filter out low-depth datasets, result-
ing in the selection of 397 samples representing 25 organ sys-
tems (Table S1, Supporting Information) (Figure 1A,B). We iden-
tified 75281 exonic circRNAs for training and quantified their
junction ratios in all of the 397 samples using CIRIquant.[10e]

To generate labels for the training data, we next applied DARTS
BHT to all possible pairwise comparisons of the samples,[18g]

which determined the significance of junction ratio difference
for each circRNA event using BSJ and forward-splicing junction
(FSJ) read counts. Approximately 25 million differentially spliced
(p(|Δjunction ratio| > 0.05) > 0.9) or unchanged circRNA events
(p(|Δjunction ratio| > 0.05) < 0.1) were identified with high con-
fidence (Figure 1B).

To predict the differentially spliced circRNA events between
samples, we developed a deep neural network model CIRI-deep
(Figure S1B, Supporting Information), on the above data to out-
put the probability of circRNAs being differentially spliced by in-
corporating both cis and trans features (Table S2, Supporting In-
formation). Specifically, we collected 3527 relevant cis sequence
features specific to each circRNA, including transcript structure,
RBP binding motifs, Alu sequence, as well as other elements that
have been proved to regulate canonical and back-splicing. Addi-
tionally, we incorporated trans features by considering the expres-
sion of 1499 RBPs that are unique to each sample. These RBPs
include known circRNA biogenesis-related genes, splicing fac-
tors and RNA degradation enzymes, etc. For the poly(A) selected
data, an adapted version of CIRI-deep was trained using the cor-
responding RBP features paired with labels derived from the to-
tal RNA-seq data (Figure 1C). It is important to note that the re-
trained model, based on poly(A) data, was adapted to output three
probabilities: unchanged, a higher junction ratio in sample A or
sample B. This is because poly(A) selected data usually contain
much fewer BSJ reads than total RNA-seq data, making it chal-
lenging to directly determine the higher side in a junction ratio
comparison. In addition to poly(A) selected bulk RNA-seq data,
the adapted CIRI-deep model can also be applied to infer differen-
tially spliced circRNA (DSC) events in other data lacking BSJ-read
information, such as RNA-seq data from 10X single cell or spatial
transcriptomics (Figure 1C). The adapted CIRI-deep model was
denoted as CIRI-deepA in the succeeding paragraphs. CIRI-deep
models take ≈60 seconds to predict ≈10 K differentially spliced
circRNA events on a single CPU core (Figure S1C, Supporting
Information).

2.2. CIRI-Deep can Accurately Predict DSC Events between
Samples

During the training process of CIRI-deep, 99% of the labeled
events were randomly extracted from each sample pair for
training, while the remaining 1% were kept as test data (0.2
million events). For independent evaluation, we also kept 100
unseen sample pairs as leave-out data (Figure 2A). After eight
epochs, CIRI-deep reached an AUROC plateau of 0.925 on test
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Figure 1. Deep learning-based differentially spliced circRNA (DSC) events prediction model and its applications. A,B) Overview of training data for CIRI-
deep. We collected 397 human RNA-seq data (total RNA, sequencing depth > 100 M) from circAtlas and RNA Atlas and applied CIRIquant to quantify the
junction ratio of circRNAs of each sample. Each sample pair is analyzed by DARTS BHT to generate high-confidence differentially or unchanged spliced
circRNA events. Number of samples and circRNAs of each tissue, sample pairs and events between each tissue pair are shown in the heatmap. C)
Schematic framework of CIRI-deep. CIRI-deep is trained on cis features of circRNAs and RBP expression of sample pairs (total RNA or poly(A)-enriched
RNA) through a deep neural network. Outputs of CIRI-deep trained on total RNA RBP expression level and poly(A) selected data RBP expression level
are probability of the circRNA being differentially spliced and probability of the circRNA being unchanged, of higher junction ratio in sample a, or of
higher junction ratio in sample b, respectively.

data, which outperformed other machine learning methods
(Figure S2A,B, Supporting Information). Meanwhile, the per-
formance on leave-out data also achieved an average AUROC
of 0.908, with 86% of the sample pairs reaching an AUROC
above 0.85 (Figure 2B). When applied to sample pairs with high
variance (e.g., different tissues or different cell lines from the
same tissue), CIRI-deep showed good performance in predicting
DSCs (Figure 2C, left two panels). To further test the applicability
of CIRI-deep in comparing different biological conditions within
the same tissue, we applied the model to two untrained public
datasets: heart samples from dilated cardiomyophathy patient
(GSE162505), and cervical cancer tissue (GSE173112), along
with their corresponding healthy controls (Figure 2C, right
two panels). Although the training data did not contain these
two samples or any other similar pathological conditions, our

model generalized well to both datasets, achieving an AUROC of
0.81 and 0.83, respectively (Figure 2C; Figure S2C, Supporting
Information).

One important application of our model is the inference of
DSC events between sample pairs with limited coverage or lack-
ing biological replication. To improve the identification of DSC
events, the probability generated by CIRI-deep based on RBP ex-
pression and cis sequence features was integrated into a Bayesian
hypothesis statistical model as a prior probability,[18g] and the pos-
terior probability of differential splicing is computed by incorpo-
rating observed junction read counts. To evaluate the effective-
ness of this approach, we used the cervical cancer tissue datasets
(3 cervical cancer tissue samples vs. 2 healthy controls) for test-
ing, with high-confidence differentially spliced or unchanged cir-
cRNA events from the comparison with replicates as the ground
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Figure 2. CIRI-deep accurately predicts differentially-spliced circRNA. A) In total, 39896 sample pairs are used for training CIRI-deep, and 100 sample
pairs are split out as leave-out sample pairs. For each sample pair in training sample pairs, 1% of the events are split out as test events. B) Performance
on test data (left) and leave-out data (right). For test data, sample pairs with more than 10 test events are plotted. Y-axis and X-axis represent number of
sample pairs and AUROC in each sample pair. AUROC for whole test events and leave-out events are labeled and plotted as dash-line. C) Generalization
on leave-out sample pair (left 2) and public data (right 2). Each dot represents differentially spliced probability predicted by CIRI-deep for circRNA
expressed in both samples. CF: conjunctival fibroblast; MEC: mammary endothelial cell; DCM: dilated cardiomyophathy; CESC: Cervical squamous cell
carcinoma and endocervical adenocarcinoma. D) The performance of statistical inference combined with (Info model) or without (Flat model) CIRI-deep
in cervical cancer datasets. Ground truth are from sample pairs with replicates. P-value was calculated using t-test, ***p < 0.001. E) Performance of
absolute value of Δ|psi|, flat model, CIRI-deep only and info model in predicting circRNA events between sample pairs of different depth (5 M, 15 M,
25 M). P-values was calculated using t-test, *p < 0.05, **p < 0.01, ***p < 0.001. F) Performance of flat model and info model in 600 15 M sample pairs.

truth. After incorporating CIRI-deep (info model), the average
AUROC across all six comparisons (3 × 2) increased by 3.4%
compared to the inference using only BSJ and FSJ reads (flat
model) in absence of biological replication (Figure 2D). In ad-
dition, we tested applicability of CIRI-deep in detecting DSC
events using low-depth sub-sample pairs (5, 15, and 25 million

reads) randomly extracted from the cervical tissue samples. As
shown in Figure 2E and Figure 2F, DSC inference combined
with CIRI-deep model outperformed the inference derived solely
from junction read counts in 93.6%, 100%, and 100% of the 5,
15, and 25 million sub-sample comparisons, with an average AU-
ROC increase of 6.1%, 3.7%, and 3.2%, respectively. Notably, the
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improvement by CIRI-deep was most prominent in the 5 million
sequencing data, as the statistical test’s power, without the incor-
poration of prior probability, was largely limited by BSJ and FSJ
read counts in these low-depth sub-samples.

2.3. Model Interpretation Revealed Tissue-Specific cis and trans
Features

To interpret the contribution of features in the CIRI-deep model,
we first estimated the permutation feature importance by evaluat-
ing the AUROC loss caused by different feature groups (Table S2,
Supporting Information). In the permutation test, we permu-
tated trans features across all training samples and cis features
across all circRNAs. As shown in Figure 3A, the permutation of
trans and cis features resulted in 44.6% and 29.5% of AUROC
loss, respectively, indicating that both feature types are indispens-
able in the CIRI-deep model, with sample-specific trans features
exhibiting greater importance. Interestingly, the most important
feature group among the cis features was the RBP binding mo-
tif, which accounted for a 14.3% AUROC loss. In addition, by
calculating the correlation between the expression level of RBPs
and the junction ratio of circRNAs, we found that 11.3% (n =
170) RBPs were positively correlated (Pearson’s r > 0.3, P-value <
0.05) with more than 100 circRNAs and 34.8% RBPs (n = 521)
were negatively correlated with more than 100 circRNAs, high-
lighting the contribution of RBP expression levels to the identifi-
cation of differentially spliced circRNAs. For example, the expres-
sion of QKI is positively correlated with junction ratio of 1070 cir-
cRNAs, and these circRNAs showed significantly different levels
on 115 cis features including the density of QKI binding motif
(Figure S3A, Supporting Information) in flanking introns com-
pared with other circRNAs (t-test with Bonferroni correction, n =
6453, FDR < 0.05), indicating that cis features can contribute to
DSC identification in a context-dependent way. When consider-
ing the 44.6% AUROC loss attributed to RBP expression in the
trans features, it further underscores the importance of RBPs
in circRNA regulation. Known cis-features related to circRNA
biogenesis accounted for only a 5.3% AUROC loss, indicating
that circRNAs are regulated through a more intricate mechanism
than previously thought. Moreover, as previously shown by Xu
et al.,[21] splicing amount plays important role in identification of
DSCs by CIRI-deep. AUROC loss caused by disturbance of splic-
ing amount has reached 3.95%.

To investigate the tissue-specific regulation of circRNAs, we
introduced an Adapted Integrated Gradients (AIG) approach to
calculate the contribution of cis and trans features in nine organ
systems (male reproductive system, central nervous system, lym-
phatic system, female reproductive system, cardiac system, gas-
trointestinal system, pulmonary system, hepatic system and re-
nal system). As illustrated in Figure 3B, for the AIG analysis of cis
features, we collected circRNAs with high junction ratio only in
target tissue and circRNAs with low junction ratio in both tissues,
which vary dramatically in prediction results. To identify cis fea-
tures contributing to the differential splicing, the integrated gra-
dient value (IG value) for each cis feature was calculated between
two groups of circRNAs as metrics. As we calculated IG value be-
tween same sample comparisons, trans features keep constant
and have no effect on evaluation of cis features. For the analysis

of trans features, the IG value was calculated similarly (Figure 3B,
Methods).

We next applied AIG to each of the nine organ systems, and
observed substantial variation in the numbers of specific fea-
tures identified across these tissues (Figure S3B,C, Supporting
Information). Notably, the male reproductive system and cen-
tral nervous system exhibited the highest numbers of enriched
specific features, with ≈200–300 specific cis and trans features
each. In contrast, only 31 and 23 cis and trans features were
identified as specific for pulmonary system. Despite variations
in cis feature specificity, the top 15 cis features were consis-
tently found to contribute significantly to the prediction of var-
ious tissues (Figure 3C). Among these features, donor and ac-
ceptor strength of back-splicing sites were most important, sur-
passing the importance of the donor and acceptor of adjacent
exons. Additionally, the presence of Alu sequences surrounding
back-splicing sites was also highly related to circRNA junction
ratio, which is consistent with previous reports (Figure 3C).[4a,6]

Compared with cis features, trans features showed higher speci-
ficity (Figure 3D; Figure S3D,E, Supporting Information). For ex-
ample, KHDRBS3, a testis-specific feature that significantly con-
tributes to DSC prediction, is a splicing factor with extremely
high abundance in testis and was found to increase circRNA
stability.[22] FUS, a known circRNA regulator, exhibited relatively
low abundance in the liver, making it a liver-specific feature with
a negative contribution.[23] RNA editing enzymes APOBEC1 and
APOBEC2 were among the top significant features in the gas-
trointestinal and cardiac system, suggesting their potential in-
fluence on circRNA biogenesis similar to ADAR. These trans
features with high IG value variance also tended to have tissue-
specific expression (Figure S3F, Supporting Information). Since
splicing amount strongly influenced the identification of differ-
entially spliced circRNAs, we further investigated the relation-
ship between splicing amount and tissue-specific circRNAs. It
turns out that splicing amount has a weaker correlation with the
junction ratio of tissue-specific circRNAs in eight out of the nine
organ systems (Figure S3G, Supporting Information).

Recent studies have shown that circRNAs are widely dis-
tributed in neuronal tissues, which encouraged us to investigate
brain-specific cis and trans features for biological insights. As
shown in Figure 3E, we observed that the most critical splicing-
related features in the brain included NOVA1 and NOVA2, two
brain-specific splicing factors. Meanwhile, NOVA-related RBP
binding motifs were found to be important cis features specific
to the brain (Figure S3H–J, Supporting Information). To further
investigate the impact of NOVA1 and NOVA2 on circRNA ex-
pression, we analyzed a publicly available transcriptomic dataset
(GSE69711), where Nova1 and Nova2 were knocked out in the
mouse brain. Our findings revealed alterations in the expression
levels of numerous circRNAs compared to control samples, in-
dicating that both Nova1 and Nova2 exert binary effects on cir-
cRNA expression. Next, we compared the average coverage of
binding sites around upregulated and downregulated circRNAs
using HITS-CLIP data. The enrichment patterns of upregulated
and downregulated circRNAs seemed to be asymmetrical. Specif-
ically, Nova1 binding regions were predominantly located in the
downstream exon of upregulated circRNAs and the upstream
exon of downregulated circRNAs; Nova2 binding regions tended
to occur in the downstream intron of downregulated circRNAs
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and the upstream intron of upregulated circRNAs (Figure 3F).
Previous studies have shown that splicing outcomes heavily rely
on RBPs and their binding positions.[24] The differential binding
regions of Nova1 and Nova2 suggest that they may exhibit distinct
regulatory and positional effects on circRNA biogenesis.

2.4. CIRI-DeepA is able to Predict DSC Events from Bulk and
Single Cell Poly(A) selected RNA-seq Data

An important application of CIRI-deep is the prediction of DSC
from poly(A) selected RNA-seq data, which primarily captures
mRNA but lacks circRNA reads (Figure 1C). We developed an
adapted version of CIRI-deep, called CIRI-deepA, which was
trained on RBP expression from the poly(A) data in RNA Atlas
using a three-class classification scheme (see Methods). To assess
the performance of CIRI-deepA, we randomly selected 15 unseen
samples as leave-out data and identified 62127 DSC events in the
corresponding total RNA-seq data for testing. As expected, the de-
tection of BSJ reads in poly(A) data revealed only a small subset of
circRNA events (4.8%) compared to those in the corresponding
total RNA-seq data (Figure S4A–C, Supporting Information), and
only 28.3% of the DSC events from the subset could be identi-
fied by traditional statistical tests. In contrast, by employing CIRI-
deepA, we could analyze the full set of 62127 circRNA events and
accurately predict the majority of DSC events, achieving an aver-
age AUROC of 0.868 (Figure 4A; Figure S4D, Supporting Infor-
mation). The high sensitivity of CIRI-deepA enables the analy-
sis of DSC events from large cohorts of poly(A) data. For exam-
ple, we applied CIRI-deepA to tumor and normal control samples
from the TCGA dataset, and detected 899–6498 regulated circR-
NAs across nine cancer types. As shown in Figure 4B, a higher
number of down-regulated circRNAs were predicted compared
to up-regulated circRNAs in all cancer types, consistent with pre-
vious reports on cancer profiling.[25]

At single-cell resolution, circRNAs can be sporadically de-
tected by full-length scRNA-seq methods such as Smart-seq2.[16b]

To evaluate the performance of our model in predicting DSC
events at the single-cell level, we downloaded Smart-seq2 scRNA-
seq data (GSE84465) from glioma and peripheral tissues, and
profiled circRNA expression in different cell clusters using CIRI-
quant. The ten most abundant circRNAs differentially spliced
or unchanged between clusters in tumor and healthy tissues
(Figure 4C,D; Figure S5, Supporting Information) were iden-
tified using a previously described statistical model,[18g] which
served as validation for CIRI-deepA predictions. As shown in
Figure 4D, CIRI-deepA accurately predicted nine of the ten
events, including two events higher in glioma, two events higher
in peripheral tissue, and five unchanged events, demonstrating
the high accuracy of CIRI-deepA predictions. It should be noted
that circRNAs were usually detected by CIRIquant in only a small
fraction of cells with limited BSJ read counts, and such a sparsity
and low coverage can hinder the downstream identification of
DSC events by the statistical test. As expected, we observed that
the consistency for 67 DSC events between CIRI-deepA and the
statistical test declined from nearly 100% to 40% (Figure 4E),
suggesting that CIRI-deepA should have broader applicability
due to its ability to predict DSC events independent of BSJ
reads.

Droplet-based single-cell platforms such as 10x Genomics
have been widely used for gene-level quantification, which only
sequence the 3′ or 5′ end of RNA transcripts and therefore cannot
be directly used for circRNA detection. To assess the feasibility of
using CIRI-deepA with droplet-based scRNA-seq data, we applied
it to a 10X glioma dataset (GSE131928) to infer cluster-specific
circRNAs defined in the aforementioned Smart-seq2 dataset. As
shown in Figure 4F, the accuracy of CIRI-deepA in predicting
differential splicing for eight circRNA markers was significantly
higher than that of a null model. For example, our model suc-
cessfully predicted circSLC8A1(1) as a myeloid-specific circRNA
with minimal expression in the OPC, Neoplastic1, and Neoplas-
tic 2 clusters, consistent with the findings based on Smart-seq2
data (Figure 4G). Another circRNA marker, circVCAN(8), was
detected in 105 (27.0%) cells of the OPC cluster but not in any
myeloid cells. While CIRI-deepA successfully predicted the DSC
event between the OPC and myeloid clusters, it also successfully
predicted circVCAN(8) to have a higher junction ratio in Neoplas-
tic 1 cluster, which showed sporadic detection in Smart-seq2 data
compared to the other two clusters.

2.5. Application in Spatial Transcriptomics

Spatially resolved transcriptomics (ST) offers valuable insights
into cellular organization and interaction; however, the detection
of circRNAs based on BSJ reads from spatial transcriptomic data
remains a significant challenge. As a BSJ-read-independent pre-
diction model for DSC events, CIRI-deepA presents a promising
opportunity for circRNA analysis in ST data. To evaluate the
capability of CIRI-deepA in predicting region-specific circR-
NAs, we applied it to three sub-regions (i.e., ventricle, atrium
and outflow tract/large vessels) of a developing human heart
dataset (EGAS00001003996) based on imputed RBP expression
(Figure 5A). CIRI-deepA successfully discriminated 1088–2618
sub-region specific circRNAs in comparisons among the sub-
regions, out of 23459 circRNAs identified in heart tissue (data
from RNA Atlas). Using the sub-region-specific circRNAs de-
rived from similar histological regions (i.e., vena cava, ventricle
and atrium) of RNA Atlas as a reference (Figure S6, Support-
ing Information), the DSC events identified by CIRI-deepA
showed a strong enrichment for region-specific circRNAs, with
p-values ranging from 3.5 × 10−54 to 3.7 × 10−6 (Fisher’s exact
test) and odds ratios ranging from 2.07 to 6.87. In contrast,
randomly selected circRNAs or events predicted from randomly
permuted RBP expression and cis features showed weak or
no enrichment (Figure 5B). When using DSC events (|delta
junction ratio| > 0.05) from RNA Atlas between sub-regions as a
reference, CIRI-deepA predictions showed a significantly higher
accuracy compared with randomly selected circRNAs in all six
pairwise comparisons (Figure S7, Supporting Information). For
example, the top 100 accuracy of predicted DSC events ranged
from 0.72 to 0.87, but only 0.17 to 0.35 for randomly selected
circRNAs. We also observed that CIRI-deepA achieved higher
accuracies for the top-5, top-10 and top-20 predictions of DSC
events between the outflow tract and ventricle/atrium region
compared to those between the ventricle and atrium, potentially
due to the high similarity of cell types between the atrium and
ventricle.
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scRNA-seq datasets. Smart-seq2 glioma (GSE84465) and 10X glioma (GSE131928) datasets are merged and 4 common clusters (Myeloid, Neoplastic
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5) in Smart-seq2 datasets, and clusters with higher marker circRNA junction ratio are highlighted by dashed line. Prediction of marker circRNAs is made
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In addition to predicting pairwise DSC events between re-
gions, it would be valuable to generate a relative junction ratio
map for each circRNA, highlighting regions or spots with higher
ratios. To achieve this, we devised a circRNA index that indicates
the relative junction ratio in each region or spot. This index was
derived, from three probabilities of differential splicing output
by CIRI-deepA, which takes into account imputed RBP expres-
sions in both the region and the pseudo-bulk mixture of the en-
tire ST sample (Figure 5C) (see Methods). The circRNA index
profile demonstrated a high consistency among similar regions
(Figure S8A–C, Supporting Information). For example, the Pear-
son’s correlation coefficient between trabecular ventricular my-
ocardium and compact ventricular myocardium was calculated
to be 0.991. In contrast, the correlation coefficients between ven-
tricle/atrium and outflow tract were 0.871 and 0.840, respectively,
indicating greater variability in circRNA expression across these
regions.

To assess the reliability of relative junction ratio map based on
the circRNA index, we investigated 50 circRNAs with the highest
deviation across different regions. Notably, we observed a signif-
icant rank correlation between the indices of these circRNAs in
three sub-regions (ventricle, atrium and outflow tract) and the
corresponding bulk tissues (Figure S9A, Supporting Informa-
tion, p-value= 0.0001). In a more specific case, circCAMKMT(4-7)
showed the highest index at both region and spot resolution in
the outflow tract region, and it also showed the highest junction
ratio in bulk vena cava tissue. In contrast, circPTK2(1, 2) junction
ratios were elevated in the ventricle region instead of the outflow
track region (Figure 5D; Figure S8D, Supporting Information),
consistent with the observations in bulk tissues. Previous stud-
ies have demonstrated that both circQKI(2-4) and mRNA QKI
play important roles in human myogenesis.[3b] In our circRNA
index plot, we found that circQKI(2-4) consistently showed rel-
atively high junction ratios in the ventricle and atrium regions
compared to the outflow tract region throughout the heart devel-
opment stages (Figure S9C, Supporting Information). This aligns
with the junction ratio profile in bulk tissue samples (Figure 5E;
Figure S9B, Supporting Information). Similarly, the host gene
QKI showed the highest expression in the ventricle and atrium
regions (Figure 5E), suggesting that circQKI(2-4) and QKI may
both contribute to myocardial development in the human heart.

To assess the capability of our model in deconvolving cell
type in spatial transcriptomic data, we applied CIRI-deepA to a
glioma ST dataset comprising 28 samples that were sequenced
using 10X Visium, and then outputted predicted probabilities
of circRNAs differentially spliced across spots. We selected 18
circRNAs that were identified with high cell type specificity

(Figure S10, Supporting Information) but low correlation of pre-
diction probabilities with each other, and then used their prob-
abilities to train three independent LASSO models capable of
predicting the proportion of the three most abundant cell types
(Neoplastic1, neoplastic2, myeloid) in each spot (Figure 5F). As
shown in Figure 5G, the cell type proportions predicted by these
LASSO models were highly consistent with those deconvoluted
by CARD.[26] Notably, the proportion of the predominant neoplas-
tic1 cell type in UKF255 and UKF260 exhibited Pearson correla-
tion coefficients of 0.603 and 0.582, respectively, between CARD
and our LASSO model. The LASSO models also effectively cap-
tured the distribution of the less abundant cell types, neoplas-
tic 2 and myeloid, showing correlations of 0.633 and 0.848, re-
spectively, with CARD deconvolution (Figure 5G). In summary,
these results demonstrated the promising ability of CIRI-deepA
to identify region-specific circRNAs.

3. Discussion

In this study, we developed a deep learning model, CIRI-deep, to
predict differentially spliced circRNA events between biological
samples. CIRI-deep was extensively trained on a comprehensive
dataset consisting of 397 human tissue samples from RNAAtlas
and circAtlas.[2b,20] It exhibited superior performance on both test
and independent datasets, surpassing traditional methods rely
on back-splicing junction reads, particularly on datasets with lim-
ited circRNA identification, such as low-depth or poly(A) selected
RNA-seq data. CIRI-deep model also offered new insights into
circRNA regulatory mechanisms. By incorporating adapted in-
tegrated gradients, we were able to quantify the importance of
tissue-specific cis and trans features. Furthermore, we evaluated
the applicability of our model in inferring cluster- and region-
specific circRNAs in single-cell and spatial transcriptomic data.
These findings underscore the promising potential of employing
deep learning models for circRNA analysis, opening avenues for
further exploration in this field.

CIRI-deep and CIRI-deepA were introduced to achieve differ-
ent goals. Until recently, identification and quantification of cir-
cRNAs were generally based on the detection of BSJ reads, which
requires deep sequencing transcriptomic data.[11b] This is due to
the relatively low expression levels of circRNAs and the inher-
ent difficulty in detecting BSJ reads compared to mRNA reads
distributed across the entire transcript. To overcome the limi-
tations imposed by sequencing depth, we developed CIRI-deep
to infer differentially spliced circRNAs and provide informative
predictions independent of back-splicing junction reads. Com-
bined with the Bayesian Hypothesis Testing (BHT) statistical

Figure 5. Application in spatial transcriptomics. A) The fetal heart ST panel is split into 4 anatomical regions, taking tissue section 16 as example
(EGAS00001003996). B) CIRI-deepA predicted region specific circRNAs between different regions are enriched in bulk data (RNA Atlas) derived result
(fisher exact test). Dot size and color indicate ratio and -log(pvalue). Random_label: randomly chosen circRNAs (same size of region specific circRNAs
in bulk data). Random_RBP: prediction using randomly permutated RBP expression value as input. Random_cis: prediction using randomly permutated
cis features as input. C) Workflow for calculating circRNA index for each region or spot. F denotes the CIRI-deepA model. D) CircRNA relative region
index plot of section 16 (left) validated by junction ratio in corresponding bulk data (right). Vena cava, atrium 1, atrium2, ventricle1 and ventricle 2 are
corresponded to outflow tract/large vessels, atrium and ventricle regions, respectively. E) Normalized circRNA index of circQKI(2-4) and normalized
expression of QKI in section 1, 6 and 16. F) Workflow for fitting the cell-type proportion with LASSO using prediction probability of 18 circRNA as input
(probabilities of higher in sample A and higher in sample B). The 18 circRNAs are manually selected for low correlation of prediction probability. G)
Predicted cell-type abundance and deconvolution (CARD)-derived cell-type abundance in 4 samples. Pearson correlation coefficient is computed between
output of Lthe LASSO model and deconvolution result.
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model,[18g] CIRI-deep significantly improves the analysis of dif-
ferentially spliced circRNAs in samples with low sequencing
depth. On the other hand, the widely used poly(A) selection
step in cDNA library construction is believed to preferentially
remove RNA transcripts lacking polyadenylated tails. Our eval-
uation corroborated the unsuitability of poly(A) selected RNA-
seq data for direct identification of differentially spliced circRNAs
due to both low sensitivity of BSJ read detection and the bias to-
ward unchanged events (Figure 4a; Figure S4, Supporting Infor-
mation). To this end, CIRI-deepA provided a promising solution
for comprehensive identification of differentially spliced circR-
NAs, which also enabled circRNA analysis with prevalent large
project employing poly(A) selected RNA-seq, such as GTEx and
TCGA.[27]

Although recent studies have used full-length scRNA-seq to
explore single-cell level circRNA expression,[16b] most single cell
and spatial transcriptomic approaches that are based on 3′ or 5′

end sequencing cannot be used for further circRNA analysis. Uti-
lizing the deep learning algorithm, CIRI-deepA for the first time
provides an efficient method for profiling circRNA splicing out-
put with poly(A) selected datasets at the single cell or spatial level.
Through our evaluation, CIRI-deepA exhibited its efficiency in
inferring differentially spliced circRNAs between single-cell clus-
ters, which significantly enhances our ability to analyze regulated
circRNA events occurring during critical processes such as tu-
morigenesis or embryonic development (Figure 4). Meanwhile,
we showcased that CIRI-deepA predictions can be used to recon-
struct spatially resolved maps of circRNA junction ratios, which
to our knowledge cannot be computed directly from currently
available spatial transcriptomic data (Figure 5). Remarkably, the
probabilities predicted by CIRI-deepA for circRNA events with
high cell type specificity align well with the task of predicting cell
type proportions for each spatial spot. While traditional spatial
transcriptomic analysis relies on thousands of marker genes to
infer cell type proportions, our study demonstrates that accurate
cell type proportions can be inferred using only a limited number
of representative circRNAs. This suggests the potential applica-
tion of cell type-specific circRNAs in single-cell transcriptomic
analysis (Figure 5).

Given that circRNAs are expressed with high specificity,[2b,20b]

it is reasonable to assume that the regulation of circRNA biogen-
esis, which remains incompletely understood, varies extensively
across different tissues.[28] Exploring the features on which the
model relies to accurately predict tissue-specific circRNAs can of-
fer new insights into the regulation of circRNAs.[29] In a previous
study, Jha et al.[30] systematically evaluated and demonstrated the
applicability of enhanced integrated gradient (EIG) in identify-
ing significant features that contribute to the prediction of tissue-
specific splicing regulation in the splicing code model. Given that
our model incorporates both trans and cis features, we adapted
EIG to assess the contribution of these features independently
in each trial and avoid potential interference between them. This
approach enabled us to characterize significant cis and trans fea-
tures that contribute to the prediction of tissue-specific regulation
of circRNA biogenesis. Notably, many of the identified significant
features have previously been demonstrated to play important
roles in circRNA regulation.[4a,6,22,23] Meanwhile, the interpreta-
tion of CIRI-deep model suggests that the preference for RBP
usage in circRNA biogenesis vary widely across tissues, which

partially explained the underlying mechanism of tissue-specific
circRNA expression profile. Several tissue-specific RBPs, such
as NOVA1, NOVA2 and APOBEC1, emerged as potential cir-
cRNA regulators, which may guide experimental exploration on
circRNA biogenesis.

Although CIRI-deep and CIRI-deepA can be applied to pre-
dict differentially spliced circRNAs in low-depth RNA-seq data,
the performance decreases when the sequencing depth is too
low to accurately quantify RBP expression levels. As shown in
Figure 2E, the AUROC of CIRI-deep to identify differentially
spliced circRNA is lower for samples with a depth of 5 mil-
lion than for samples with a depth of 15 and 25 million. For
samples with extremely low sequencing depth, such as spatial
transcriptomic data, we recommend performing gene expression
level imputation before prediction. Meanwhile, since the train-
ing of CIRI-deep models relies on cis-features from the reference
genome, the prediction of cancer-specific circRNAs expressed
due to genomic mutation or RBP dysregulation may be beyond
the scope of our tools.

4. Conclusion

In summary, the introduction of CIRI-deep represents a promis-
ing solution for inferring differentially spliced circRNAs in var-
ious types of datasets. The model effectively addresses the chal-
lenges posed by low sequencing depth or poly(A) selected data,
as well as single-cell and spatial transcriptomic data, significantly
broadening the horizons of circRNA research. We believe that
the versatility and robust performance make it valuable tool for
researchers exploring the regulatory mechanisms and functional
implications of circRNAs across different experimental settings.

5. Experimental Section
CIRI-Deep and CIRI-deepA Model for Predicting Differentially Spliced circR-

NAs: The CIRI-deep and CIRI-deepA models were designed for predict-
ing the differentially spliced circRNAs between biological samples using
total RNA-seq data and poly(A) selected data, respectively. Both models
were trained using cis sequence features and sample-specific trans fea-
tures as described below. CIRI-deep outputs the probability of a given
circRNA being differentially spliced between two biological samples, and
CIRI-deepA outputs three probabilities that sum to one indicating: un-
changed, a higher junction ratio in sample A or sample B.

The overall architecture of CIRI-deep and CIRI-deepA were shown in
Figure 1 and Figure S1 (Supporting Information). The basic unit of CIRI-
deep and CIRI-deepA is a dense block, which consists of four layers includ-
ing a fully connected layer, a batch normalization layer, rectified linear unit
(ReLU) and a dropout layer. CIRI-deep and CIRI-deepA have four dense
blocks, with input size of 1200, 500, 300, and 200, respectively. To address
the potential overfitting problem and to improve the generalization ability
of the models, we added dropout layers that randomly drop connections
at rates of 0.5, 0.3, 0.2, and 0.1,[31] respectively. Batch normalization layers
were added to accelerate the training process.[32] The activation functions
used in the output layers of CIRI-deep and CIRI-deepA were sigmoid and
softmax, respectively.

Training Data Generation: We downloaded human total RNA-seq
datasets (fastq files) from RNAAtlas and circAtlas (Table S1, Supporting
Information) for training.[2b,20] Because most circRNAs are expressed
at relatively low abundance compared to their linear counterparts, 397
deep sequenced samples with more than 100 million reads were kept for
accurate identification and quantification of circRNAs. Trimmomatic v0.39
were used to remove adapters and low-quality bases with the parameters
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“ILLUMINACLIP:TruSeq3-PE-2.fa:2:30:10:2:true MINLEN:36”.[33] The
trimmed reads were then aligned to the human reference genome hg19
using bwa v0.7.17.[34] We applied CIRIquant to identify and quantify
circRNAs with GENCODE v38lift37 as annotation file.[10e] CIRIquant
generates a pseudo reference based on circRNAs identified by CIRI2, and
realigns sequencing reads to it to output BSJ read count, FSJ read count,
junction ratio, circRNA type (intronic, exonic or intergenic) and host gene
for expressed circRNAs in each sample. All exonic circRNAs were used
for training.

To generate training labels, we applied DARTS BHT(flat) to each
pairwise sample comparison.[18g] DARTS BHT is a Bayesian statisti-
cal framework designed for determining the statistical significance of
differential or unchanged splicing events at a given ΔPSI threshold
between biological samples. DARTS BHT can use an uninformative prior
(flat model) or incorporate an empirical prior (info model) to determine
significance from RNA-seq data Here, we use predictions derived from the
deep learning model as empirical prior to augment inference. Specifically,
events with posterior probability p(|Δjunction raio| > 0.05) > 0.9 are la-
beled as positive and events with posterior probability p(|Δjunction raio| >
0.05) < 0.1 were labeled as negative. To ensure sufficient statistical power,
we kept events with BSJ and FSJ read count greater than two and sum
of BSJ and FSJ read count greater than 20 in both samples, resulting
in 25039091 high-confidence differentially spliced or unchanged events
with a ratio of 1:3 for training. CIRI-deepA was designed to predict the
differential splicing pattern of circRNA using RBP expression derived from
poly(A) selected data as input. Significant events of differentially spliced
and unchanged circRNA identified from paired total RNA-seq data from
RNAAtlas are labeled as positive and negative events for training. Positive
events were further labeled as “higher in A” (circRNA had higher junction
ratio in sample A) or “higher in B” (circRNA has higher junction ratio in
sample B).

Training and Testing of CIRI-Deep and CIRI-deepA: For each sample
comparison, we randomly selected 1% of the events to test and decide
the early stop point, and the remaining events were used for training. To
keep the test data balanced, the number of negative and positive events is
equal. For independent evaluation, we also randomly selected 100 sample
comparisons as leave-out datasets.

During training, the training data was split into mini batches with size
of 512. To avoid the training bias, each batch is composed of half posi-
tive events and half negative events. Binary cross entropy was used as the
loss function and minimized by Adam optimizer.[35] Model performance
was evaluated on test data after each epoch of training using AUROC. The
model was trained for eight epochs on NVDIA TITAN X GPU.

For CIRI-deepA, 15 samples were randomly selected as leave-out
datasets for more rigorous evaluation. Categorical cross entropy was used
as the loss function. The model was trained for seven epochs.

Cis and Trans Feature Extraction: There are a total of 6525 features in
CIRI-deep, of which 3527 are cis features and 2998 are trans features.
These features covered the entire collection of splicing related sequence
features and RNA binding proteins previously used by Zhang et al. to pre-
dict exon skipping patterns.[18g] In addition to those features, we added
four classes of features related to circRNA generation. Cis features were
extracted from different regions surrounding back-splicing junctions. A1
and A2 denotes upstream and downstream BSJ exon. If circRNA is com-
posed of a single exon, A1 and A2 refer to the same exon. C1 and C2 denote
upstream and downstream exon. I1 and I2 denote upstream and down-
stream flanking intron.

The full feature set was listed in Table S2 (Supporting Information),
which consists of 12 categories:

1) Transcript structure: Length of flanking intron, length of circexons,
distance between junction sites and their ratio, and whether the cir-
cRNA will induce a frameshift.

2) Translatability: Whether transcript can be translated without stop
codons (all three reading frames are tested).

3) Splicing strength: Splicing strength at junctions between C1-A1 and
A2-C2.

4) Conservation score: Average conservation score of the first and last
100 nucleotides of I1 and I2.

5) Average and maximum second structure score at junction sites.
6) Average nucleosome occupancy score of the first and last 100 nu-

cleotides of I1 and I2, as well as that of the first and last 50 nucleotides
of A1 and A2.

7) Exon splicing enhancer and silencer, intron splicing enhancer and si-
lencer.

8) Kmers in the first and last 150 bp of I1 and I2.
9) RBP binding motifs in I1, I2, A1, A2, C1 and C2.

10) Reverse complementary match between I1-I2, I1-I1 and I2-I2.
11) Repetitive elements in I1 and I2.
12) Splicing amount.

As previously reported, repetitive elements and RBP binding motifs in
flanking introns regulate circRNA generation. The collection of splicing
related features only covered intron region of 150 bp outside the back-
splicing junction sites. Considering the potential long-range regulatory ef-
fect of flanking introns, features about RNA binding motifs, repetitive el-
ements and reverse complementary match (RCM) of the entire flanking
introns were added. In previous studies, Xu and Zhang found that splic-
ing amount was related to circRNA expression abundance.[21] Features of
splicing amount, defined as the total amount of back-splicing and canon-
ical splicing of a gene, were also added. New features were calculated as
follows:

1) Intron repetitive elements: We extracted Alu/L1/L2 repetitive element
sites from USCS Genome Browser Repeat Masker track. The feature is
defined as number of Alu/L1/L2 repetitive elements in flanking introns.

2) Intron RBP motif: We included motif counts of 111 RBPs and PSSM
scores of 14 RBP in flanking introns, and also scores normalized by
intron length. PSSM matrix was downloaded from RBPmap.[36]

3) Reverse complementary matches: Reverse complementary matches
(RCM) occurring in flanking regions facilitate circRNA generation, but
may hinder circRNA generation when occurring within introns. RCM
pairs between intronic sequence and reverse complementary sequence
were identified using BLAST as previously described by Cortez-Lopez
et al.[37] with word size 11. Counts of RCM pairs between flanking in-
trons and within introns, and counts weighted by intron length were
added to the input features.

4) Splicing amount: For each circRNA and sample, the reads spanning
annotated junction in the parental gene were extracted from alignment
file (SAM file). Counts per million (CPM) values of junction reads in
both samples were extracted as input feature. Splicing amount was not
used for CIRI-deepA training.

Other features were calculated as described in study of Zhang et al.[18g]

Trans features included expression value of 1499 RNA binding proteins for
both samples. After trimming, the reads were aligned to the human refer-
ence genome hg19 using Hisat2 v2.0.5.[38] Gene expression levels were
quantified as TPM using StringTie v1.3.5.[39] All the features were normal-
ized by the maximum absolute value across the whole training datasets.

Adapted Integrated Gradient for Identifying Tissue-Specific cis and trans
Features: The method of Enhanced integrated gradient to quantify con-
tribution of tissue-specific cis and trans feature to differential back-splicing
events independently was adapted.[30] Generally, contribution of each fea-
ture to target-tissue-specific circRNAs was determined with respect to
baseline events x’∈𝜒 . Two groups of events as target events and baseline
events was selected: events with circRNA specifically generated in target
tissue and events with circRNA rarely generated in tissue pairs including
target tissue. Between target events and baseline events, the integral over
the gradients along a linear path 𝛾 was calculated for each feature, which
was denoted as IG value. The linear path 𝛾 between baseline events x’
and target events x is determined as 𝛾(𝛼) = x’ + 𝛼(x – x’), 𝛼∈[0, 1]. In the
calculation, three baseline events that were closest to the median of base-
line class (Euclidean distance) to represent the entire baseline class was
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selected. The IG value of the jth feature was calculated as follows:

IG valuej (x) = ∫
1

𝛼=0

𝜕F (𝛾 (𝛼))
𝜕𝛾j (𝛼)

𝜕𝛾j (𝛼)

𝜕𝛼
d𝛼

=
(

xj − x′j

)
× ∫

1

𝛼=0

𝜕F (x′ + 𝛼 × (x − x′))
𝜕xj

d𝛼 (1)

where F is the deep learning model.
AIG was applied in nine organ systems including male reproductive,

central nervous, lymphatic, female reproductive, cardiac, gastrointestinal,
pulmonary, hepatic and renal system. Each organ system included multi-
ple tissue samples from RNAAtlas. The IG value of cis and trans features
was evaluated for CIRI-deepA model as follows:

1) Cis feature: For each organ system, we extracted all sample compar-
isons between this organ system and other organ systems. In each
sample comparison, differentially spliced circRNA events with junc-
tion ratio higher than 0.5 in sample from target organ and lower than
0.1 in samples from other organs were selected as target events, while
unchanged circRNA events with junction ratio lower than 0.1 in both
samples were selected as baseline events. For each sample compari-
son, IG values were calculated for all cis features. IG values of trans
features were all 0 as sample comparison was fixed in each trial. The
mean absolute IG value of each cis feature across all sample compar-
isons was calculated as the final value for the organ system.

2) Trans feature: For each organ system, we first selected circRNAs with
high junction ratio greater than 0.5 in all samples of this system. For
each selected circRNA, target events were constructed by searching
for sample comparisons between this organ system and other organ
systems, with this circRNA being differentially spliced; baseline events
were constructed by searching for sample comparisons consisting of
two samples from other organ systems, with this circRNA being un-
changed and have a low junction ratio < 0.1. For each circRNA, IG
values were calculated for all trans features. IG values of cis features
were all 0 as circRNA was fixed in each trial. The mean absolute IG
value of each trans feature across all selected circRNAs was calculated
as the final value for the organ system. All the computed IG values
were given in Table S3 (Supporting Information).

Evaluation of Generalization on Public Data: The generalization abil-
ity of CIRI-deep was evaluated on five public datasets (GSE161960,
GSE162505, GSE172315, GSE173112, GSE179321).[40] Detailed informa-
tion of these datasets is provided in Table S1 (Supporting Information).
Identification and quantification of circRNAs in these datasets were car-
ried out as mentioned above (Training data generation). Sample compar-
ison was performed between the corresponding experimental and control
sample group set in each study. Differentially spliced or unchanged events
were labeled at the same threshold as for training data. All evaluations of
generalization were restricted to the circRNA events constructed during
training. Each input trans feature was normalized by the maximum gene
expression value in the corresponding training datasets, and the normal-
ized value exceeding 1 was reset to 1. AUROC was used for evaluation.

Inference of DSCs in Sample Pairs Lacking Replication or with Limited Cov-
erage: To more accurately infer differentially spliced circRNA in sample
pairs lacking replication or with limited coverage, the prediction of CIRI-
deep was incorporated into the DARTS BHT framework. A dataset of cer-
vical cancer (GSE173112) for evaluation was used.[40d] The dataset con-
sists of cervical cancer tissues and normal cervical tissues, and each group
has three biological replicates collected from three cervical cancer patients
and three normal patients, respectively. One normal cervical tissue sam-
ple (GSM5260031) was filtered out for the abnormal detection rate of cir-
cRNA. Then, differentially spliced and unchanged circRNAs between these
two groups with replication were identified by CIRI3 (https://github.com/
gyjames/CIRI3) with rMATS statistical model as ground truth, at a thresh-
old of p < 0.01, Δjunction ratio > 0.05 and p > 0.99, Δjunction ratio > 0.05,
respectively.[41]

CIRI-deep was applied to the six sample comparisons (3×2) and in-
ferred differentially spliced and unchanged circRNAs using flat and info
models as described above. The significance of differential performance
between flat model and info model was tested by one-sided t-test.

To evaluate the performance of CIRI-deep on low depth samples, we
randomly extracted 5, 15, and 25 million reads pairs from each sample
with 10 replicates in the cervical datasets, and performed 600 sample com-
parisons between cancer and normal groups for each depth. The perfor-
mance of inference using |Δjunction ratio| of events, probability derived
from flat model, prediction value of CIRI-deep and probability derived from
info model were then evaluated.

Permutation Test for Feature Group Contributions: To evaluate the con-
tribution of cis and trans features, feature groups were randomly permuted
and the AUROC loss was measured in leave-out data. Feature groups were
listed in Table S2 (Supporting Information). The AUROC loss of the ith fea-
ture group was calculated as:

AUROCloss = (AUROC − AUROCi) ∕AUROC × 100% (2)

where AUROC represents the AUROC value of prediction using entire fea-
ture set without permutation and AUROCi represents the AUROC value of
prediction with ith feature group permuted.

Analysis of the Effect of NOVA1 and NOVA2 on circRNA Biogenesis: A
mouse brain dataset (GSE69711) which consists of three-replicate sam-
ples for mouse cortex from embryonic 18.5-day wild type, Nova2-/-, and
Nova1-/- mice was used to analyze the effect of Nova1 and Nova2 on cir-
cRNA biogenesis.[42] The sequencing data (fastq file) was aligned to the
mouse reference genome of version GRCm39 with bwa, and applied CIRI-
quant to identify and quantify circRNAs expressed in these samples. Dif-
ferentially expressed circRNAs were identified by CIRI3 with a threshold
of pvalue < 0.05. Binding peaks of Nova1 and Nova2 generated by HITS-
CLIP (bed files) were also downloaded from the same study. For Nova1
and Nova2, the average binding depth was estimated in the region from
upstream 1000 bp to downstream 150 bp surrounding the upstream junc-
tion site, and from upstream 150 bp to downstream 1000 bp surrounding
the downstream junction site. The average depth was calculated using a
10-nt sliding window.

DSC Inference with Poly(A) Selected Data: The same pipeline of bwa
and CIRIquant as described above to identify and quantify circRNAs ex-
pressed in poly(A) RNA-seq samples was used. For each sample com-
parison, only circRNAs detected in at least one poly(A) RNA-seq sample
were used for evaluation of DSC inference. The Δjunction ratio was used
directly for inferring differentially spliced circRNA. If the circRNA was not
detected, then the junction ratio was labeled as 0. The circRNA events with
|Δjunction ratio| < 0.05 was labeled as “unchanged”, circRNA events with
Δjunction ratio ≥ 0.05 was labeled as “higher in sample A” and circRNA
events with Δjunction ratio ≤ −0.05 was labeled as “higher in sample B”.

Inferring Regulated circRNAs in Cancer with TCGA Data: CIRI-
deepA was applied to TCGA datasets to detect consistently regulated
circRNAs.[43] Nine cancer datasets were used in this study: TCGA-STAD,
TCGA-BRCA, TCGA-COAD, TCGA-KIRC, TCGA-LIHC, TCGA-LUAD, TCGA-
LUSC, TCGA-PRAD and TCGA-THCA. To avoid confounders introduced by
different individuals, prediction was performed between samples collected
from the same individual. We downloaded TPM gene expression data from
TCGA repository. A circRNA was labeled as upregulated in a sample com-
parison if the prediction value corresponding to cancer sample was higher
than 0.35, and was labeled as downregulated if the prediction value cor-
responding to normal sample is higher than 0.35. For each cancer type,
circRNAs labeled as upregulated in more than 35% of the sample compar-
isons were defined as consistently upregulated circRNAs, and circRNAs
labeled as downregulated in more than 35% of the sample comparisons
were defined as consistently downregulated circRNAs of that cancer type.

Inferring Regulated circRNAs in Glioma Dataset with Smart-seq2 scRNA-
seq Data: A Smart-seq2 dataset (GSE84465) to evaluate the applicability
of CIRI-deepA for differentially spliced circRNA inference using single cell
RNA-seq data was downloaded.[44] In the dataset, a total of 3589 cells
of different cell types (myeloid, oligodendrocytes, endothelial, neurons,
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astrocytes) were selected using cell type markers from human primary
glioblastoma and periphery normal tissue samples.

The raw gene counts of all cells were downloaded from GEO reposi-
tory. Seurat v4.3.0 to process the scRNA-seq data was used.[45] Cells with
less than 10 genes detected and genes expressed in less than 200 cells
were filtered out. The gene expression profile was normalized using “Log-
Normalize”, and 2000 highly variable genes were extracted and scaled for
downstream analysis. Next, PCA using the previously determined variable
genes was performed and the top 20 components were chose for UMAP
dimension reduction and visualization. The cell type labels were assigned
to the cell types given in the previous study.

For each cell, circRNAs expressed were identified and quantified us-
ing CIRIquant. For each cell types, total BSJ read counts and FSJ read
counts in cells expressing the given circRNA were used to calculate junc-
tion ratios, and the junction ratios are next compared between tumor and
normal groups. Due to low sequencing depth and data sparsity, circR-
NAs were only detected in limited cells, and only cells detected to express
the given circRNA were included in differentially spliced circRNA analy-
sis to avoid underestimation of the junction ratio. We employed DARTS
BHT to infer the differentially spliced and unchanged circRNAs. CircRNAs
with p(|Δjuntion ratio| > 0.05) > 0.9 and MLE(junction ratiotumor – junction
ratioperiphery) > 0 were labeled as “upregulated”, circRNAs with p(|Δjuntion
ratio| > 0.05) > 0.9 and MLE(junction ratiotumor – junction ratioperiphery) <
0 were labeled as “downregulated”, circRNAs with p(|Δjuntion ratio| >
0.05) < 0.1 were labeled as “unchanged”. In total, 67 circRNA events were
inferred and labeled.

Then, CIRI-deepA was applied to predict differentially spliced circRNAs
between tumor and normal groups for each cell type. For each RBP, the
mean expression value across cells was used to represent its expression in
this cell type. Figure 4d showed the prediction value of the most abundant
circRNAs that were detected to be expressed in at least 10 cells in both
tumor and normal tissues.

Inferring Cell Type Specific circRNAs: Another glioma scRNA-seq
dataset (GSE131928) was downloaded for evaluation.[46] Cells in the sam-
ple were collected from IDH (isocitrate dehydrogenase) wild-type glioblas-
tomas and were processed through the 10X Chromium 3′ Single Cell Plat-
form using the Chromium Single Cell 3′ Library.

The TPM gene expression matrix was filtered as described in last part,
and then normalized as TPMnorm = ln(TPM/100+ 1) for downstream anal-
ysis. The normalized data was integrated to the Smart-seq2 glioma dataset
to get circRNA expression. Features for integration was selected using
the “SelectIntegrationFeatures” function, then two datasets were merged
using the “FindIntegrationAnchors” and “IntegrateData” functions with
default parameters provided by Seurat. The expression values were then
scaled and the heterogeneity associated with platform was regressed out
using the “ScaleData” function. PCA was performed on the integrated
data, and the top 20 PCs were selected for defining clusters using the
“FindNeighbors” and “FindClusters” functions in resolution of 0.3. As the
cell composition of these two glioma datasets was not identical, to make
sure that each cell type from two platforms have enough cells to define or
predict cell type specific circRNA, clusters of which cells are less than 100
or cell proportion is less than 0.05 in at least one of the platforms were
filtered out. The remaining clusters were then re-clustered and visualized
using UMAP. Cell type marker genes were used for classification of the re-
maining cell types, including PTPRC for myeloid and GPR17, EDIL3 and
PLLP for OPC. Neoplastic cells were split into two clusters. While both
clusters have relatively high expression of EGFR, Neoplastic 1 cluster has
relatively high expression of C1R and ID3 and neoplastic 2 cluster has rel-
atively high expression of XRCC6BP1 and STMN2.

We defined cell type specific circRNAs according to the following crite-
ria:

1) The circRNA were expressed in more than five cells of a cell type.
2) The mean junction ratio of the circRNA was higher than 0.05 in cells

expressing the circRNA of the cell type.
3) P-value of the one-sided Wilcoxon rank sum test was less than 0.05

when comparing the junction ratios in the cell type against those in all
other cells.

The prediction was performed between the given cell type and other
clusters for each previously defined cell type specific circRNA. The circR-
NAs with the probability of higher junction ratio in the cluster higher than
0.35 were predicted to be cell type specific. The accuracy for each previ-
ously defined cell type specific circRNA is calculated as Accuracy = (TP +
TN)/N, where TP represents the number of cell types predicted to have
higher junction ratio in defined cell types, TN represents the number of
cell types predicted to have lower junction ratio in other cell types and N
represents the number of cell types. The random prediction was generated
according to a uniform distribution with the interval from 0 to 1 for each
circRNA and each cell type.

Inferring Region Specific circRNAs in Spatial Transcriptomic Data: The
filtered gene expression matrix (raw count) of a human developing heart
dataset consisting of 19 samples from three development stages was
downloaded from https://www.spatialresearch.org.[47] The dataset was
generated using the Spatial Transcriptomics v1.0 protocol. In a previous
study, all sequenced spots were clustered into 10 clusters representing
different anatomical regions as shown in Figure S9 (Supporting Informa-
tion). Each section was split into four regions, including ventricle (cluster
0–3), atrium (cluster 4), outflow tract/large vessel (cluster 5) and other
(cluster6-9), to simplify the analysis.

Bulk transcriptomic data from RNAAtlas was used as reference to evalu-
ate the predictions of CIRI-deepA. Five bulk samples were used to extract
region specific circRNAs: vena cava tissue (GSM4117975) representing
outflow tract/large vessel regions, left atrium tissue and right atrium tissue
(GSM4117981 and GSM4117987) representing atrium regions, and left
ventricle tissue and right ventricle tissue (GSM411794 and GSM4117990)
representing ventricle regions.

For each tissue, we defined a set of tissue specific circRNAs using the
following criteria:

1) We calculated 𝜏 value of each circRNA across three tissue types with
𝜏 =

∑N
i=1(1 − xi)∕(N − 1), where xi represents the junction ratio of cir-

cRNA normalized by the max junction ratio and N represents the
number of tissues, three here. The 𝜏 value of tissue specific circRNAs
should be higher than 0.5.

2) The junction ratio difference of tissue-specific circRNA between the
corresponding tissue and other tissues should be larger than 0.2.

Tangram was used to perform gene expression value imputation for
each spot,[48] using gene expression values from the corresponding
scRNA-seq data as reference. Top 100 genes of each cell type were used
for mapping. The imputed RNA expression value of each spot was nor-
malized with a scale factor of 300 000 and then used for prediction with
CIRI-deepA.

Then CIRI-deepA was used to predict circRNAs with higher junction ra-
tio for each anatomical region when compared to other regions. Fisher’s
exact test was used to test whether the predicted circRNAs are enriched in
the region-specific circRNAs. Random RBPs were generated by permuta-
tion over the entire gene expression profile and then used for prediction.
The test with randomly selected circRNAs was also performed, the num-
ber of which was equal to the previously defined region-specific circRNAs,
denoted as “Random_label”.

CircRNA Index for Generating Relative Junction Ratio Map: A circRNA
index to indicate the relative junction ratio of a given circRNA in each re-
gion or spot was created. The index value was based on the prediction
between the target region and the whole panel. Specifically, the index of
the ith circRNA in jth region was calculated as follows:

indexi,j =
(

1 − punchanged
i,j

)
×
(

pregion
i,j − ppanel

i,j

)
(3)

where punchanged
i,j , pregion

i,j and ppanel
i,j represent three probabilities output by

CIRI-deepA when comparing the junction ratio of the ith circRNA in the jth
region to the whole panel.

Inferring Cell Type Proportion with Prediction Value Derived from CIRI-
deepA: A glioma dataset generated with 10X Visium in study of Ravi et al.

Adv. Sci. 2024, 11, 2308115 © 2024 The Authors. Advanced Science published by Wiley-VCH GmbH2308115 (14 of 16)

 21983844, 2024, 14, D
ow

nloaded from
 https://advanced.onlinelibrary.w

iley.com
/doi/10.1002/advs.202308115 by Institute O

f Z
oology, C

A
S, W

iley O
nline L

ibrary on [26/01/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advancedscience.com
https://www.spatialresearch.org


www.advancedsciencenews.com www.advancedscience.com

was downloaded.[49] The dataset was used to evaluate the applicability of
prediction values derived from CIRI-deepA in predicting cell type propor-
tion. We used CARD to infer the cell type proportion of each spot using the
Smart-seq2 scRNA-seq glioma dataset mentioned above as reference,[26]

with parameters “minCountGene = 100, minCountSpot = 5”. Then CIRI-
deepA was applied to generate three probabilities comparing each spot to
the whole panel. 18 circRNAs derived from the Smart-seq2 dataset with
high cell type specificity (𝜏 value > 0.75) were selected for prediction.[50]

Regression models for three major cell types (myeloid, neoplastic1 and
neoplastic2) using the prediction values corresponding to the spot and the
whole panel as predictor was developed. We use “glmnet” package in R to
build the three LASSO models with an internal 10-fold cross-validation,[51]

with the lambda that minimizes the cross-validation error.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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