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The detection of circular RNA molecules (circRNAs) is typically based on
short-read RNA sequencing data processed using computational tools.
Numerous such tools have been developed, but a systematic comparison
with orthogonal validation is missing. Here, we set up a circRNA detection
tool benchmarking study, inwhich 16 tools detected more than 315,000
unique circRNAsinthree deeply sequenced human cell types. Next, 1,516
predicted circRNAs were validated using three orthogonal methods.
Generally, tool-specific precision s high and similar (median of 98.8%, 96.3%
and 95.5% for qPCR, RNase R and amplicon sequencing, respectively) whereas
the sensitivity and number of predicted circRNAs (ranging from 1,372 to
58,032) are the most significant differentiators. Of note, precision values are
lower when evaluating low-abundance circRNAs. We also show that the tools
canbe used complementarily to increase detection sensitivity. Finally, we
offer recommendations for future circRNA detection and validation.

Circular RNAs (circRNAs) are a class of non-coding RNA molecules
ubiquitous in humans and other eukaryotic species. For along time,
circRNAs were regarded as unimportant byproducts of splicing. How-
ever, since the advancement of RNA sequencing technologies and the
development of circRNA detection bioinformatics pipelines there has
beenasignificantincreasein circRNA research, withacompound annual
growthrate of scientific publications of 58% over the last 5 years (Fig. 1a)".

Although anin vivo function for most circRNAs remains unknown
and functional analyses are typically restricted toin vitro experiments,
some circRNAs have been linked to specific diseases, including cancer.

CircRNAs have also been reported to be more stable than linear tran-
scripts due to the absence of afree 5’ or 3’ end that can be recognized by
exonucleases'. Inline with this, a higher fraction of circRNA relative to
linear RNA has been observedinawide range of humanbiofluids, which
makes theminteresting biomarker candidates, with the potential tobe
used for minimally invasive tests for diagnosis or response monitoring?.
Wang et al. reviewed 112 differentially expressed circRNAs in various
biofluids from patients with different cancer types®. Furthermore, 15
clinicaltrialsincorporating circRNAs as disease biomarkers have been
initiated (ClinicalTrials.gov, accessed on 20 October 2022).

A full list of affiliations appears at the end of the paper.
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Fig.1| CircRNA scientificrelevance, structure and detection. a, Over the last
decade, circRNA research has increased rapidly, as illustrated by the proportional
growth of publications mentioning circRNA in Europe PubMed Central.

b, CircRNAs are formed through back-splicing, which resultsin acircular
molecule with a back-spliced junction (BSJ). Black boxes highlight the BSJ in the
circRNA isoforms. ¢, CircRNAs can be detected with RT-qPCR using a BSJ-specific
primer pair. The primer pair canbind only in a divergent manner (facing away

BSJ-containing amplicon

from each other) to linear RNA, where no amplification will be possible, yet binds
the circRNA in a convergent manner (facing towards each other), amplifying

the BS) sequence. d, Large-scale circRNA detection is typically performed using
total RNA sequencing datasets and specialized computational tools. These tools
identify BSJ-spanning reads, which map divergently (in reverse order) on the
linear reference genome.

Eukaryotic circRNAs are formed through a process called
back-splicing, in which the 5’ end of an RNA molecule forms a covalent
bondwithitsown3’end, forminga circular molecule with a character-
istic back-spliced junction (BSJ) sequence (Fig. 1b)". CircRNAs consist
of one or multiple exons and, analogous to linear RNA, they also have
alternative splicing, in which circRNAs with the same BS) sequence may
have a different exon (and/or intron) composition’.

In a targeted manner, circRNAs can be quantified with reverse
transcription—quantitative polymerase chain reaction (RT-qPCR)
using BSJ-spanning primer pairs to amplify the region flanking the
BSJ (Fig. 1c). These primer pairs are divergent (facing away from each
other) when hybridizing to the linear host transcripts and can therefore
amplify only the circRNA*. However, false positives resulting from
alignment ambiguity, repeat sequences, trans-splicing or reverse
transcription template-switching artifacts have been described*®. In
all of these cases, alinear RNA molecule is formed with the same exon
orientation and, therefore, the same sequence as the circRNA BSJ.
To prevent false-positive circRNA identification, linear RNA is often
digested with the exonuclease ribonuclease R (RNase R) followed by
RT-qPCR. RNase R typically degrades linear RNA, whereas circRNAs
are generally not affected. Of note, it has been suggested that long
circRNAs may be somewhat sensitive to RNase R degradation, and vari-
ous challenges in the validation of circRNAs have been recognized”.

In general, high-throughput or exploratory circRNA detection is
performed using bioinformatics approaches that analyze total RNA
sequencing data. For this, the RNA sequencing reads are first mapped
against a reference genome. The unmapped reads are subsequently
used to identify BSJ-spanning reads that map divergently (in reverse
order) onthe linear genome (Fig. 1d).

Over the last decade, numerous computational circRNA detec-
tion tools have been developed and tested. Whereas multiple sets of
circRNA detection tools using a bioinformatics approach have been
compared (often when a novel tool is published)’ ¢, a systematic and
comprehensive evaluation of many circRNA detection tools using an
orthogonal validation method is still missing. In our benchmarking
study the aim was to evaluate all currently available circRNA detec-
tion tools with an orthogonal approach using RT-qPCR, RNase R and
amplicon sequencing (Fig. 2a). Our study highlights that although
the precision of the tools is generally excellent, their sensitivities are
highly variable.

Results

CircRNA detection tools predict awide variety of circRNAs
CircRNA detection tools differ in detection strategies and filtering.
For this study, 16 different circRNA detection tools were assessed:
CIRCexplorer3 (ref. 17), CirComPara2 (ref. 11), circRNA_finder',
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Fig.2| CircRNA detection tools predict a wide variety of circRNAs. a, This
study consists of a circRNA detection phase and a circRNA validation phase. For
the former, 16 circRNA detection tools were used to predict circRNAs in three
deeply sequenced cancer cell lines. For the latter, a set of circRNAs was selected
per tool and validated using three orthogonal methods, generating tool-specific
precision values for each method. This was also used to compute compound
precisionand both types of sensitivity values for each circRNA detection tool.

b, The number of reported circRNAs differs greatly between tools (shown for HLF
cells; similar results for the other cell lines are shown in Supplementary Fig. 1).
The tools are ordered according to the total number of predicted circRNAs. The
vast majority of circRNAs are predicted with a BSJ count below 5 (in blue). Two
tools, circRNA_finder, and segemehl, filtered their results to report only circRNAs
with a BSJ count of at least 5 (in orange). "Tool filtered the output based on BS)

count. ¢, The majority of circRNAs (49.9%) are detected by only one tool. Circseq_
cupreports the largest set of unique circRNAs (shown for HLF cells; similar
results for the other cell lines are shown in Supplementary Fig. 4). A small set of
55 circRNAs is detected by all tools (column n_db in Supplementary Table 2).

d, CircRNA splice sites differ between circRNA detection tools. Most commonly,
the canonical AGNGT patternis observed, with AG being the splice acceptor, N
the circRNA, and GT the splice donor. *Circseq_cup, CirComPara2, Sailfish-cir
and segemehl do not report strand information. To be able to retrieve a splicing
sequence for the circRNAs from these tools, it was assumed that the circRNA
originated from the positive strand. This led to the ACNCT pattern (reverse
complement of AGNGT), most probably from circRNAs that were assigned to
the positive strand incorrectly. Last, there are some tools that alsoreporta
substantial number of circRNA BS) sequences with a GGNGG splicing pattern.

circseq_cup”, CircSplice®, circtools?, CIRI2 (ref. 22), CIRIquant?,
ecircscreen (unpublished tool), find_circ®*, KNIFE”, NCLscan®,
NCLcomparator®, PFv2 (ref. 27), Sailfish-cir?® and segemehl? (Table 1
and Supplementary Table 1). CircRNA detection tools differ in their

circRNA detection approach (including strand assignment), reli-
ance on linear annotation, and filtering methods. CircRNAs can be
detected from RNA sequencing data using the pseudo-reference-based
approach (also called the candidate-based approach) or the
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Table 1| CircRNA detection tools with their circRNA detection approach, strand assignment approach, reliance on linear
annotation and filtering approach

Tool Approach circRNAs Strand assignment® Splicing BSJ count Minimum Maximum
detectedin... filter® circRNA circRNA
length (in length (in
nucleotides)® nucleotides)®
CIRCexplorer3  Segmented read-based Entire genome  Based on linear annotation ~ AGNGT None None None
CirComPara2 Integrative® Entire genome  No strand reported AGNGT, ACNCT >2 299 2,304,996
circRNA_finder  Segmented read-based Entire genome  Based on mapping to AGNGT >5 200 100,000
genome
circseq_cup Based on segemehl, Entire genome  No strand reported Non-canonical None None 5,000
with full-length circRNA
assembly
CircSplice Segmented read-based Known splice Based on linear annotation ~ AGNGT, ACNCT None 78 None
sites
circtools Segmented read-based Entire genome  Based on mapping to AGNGT >2in>2 31 1,000,000
genome samples
CIRI2 Segmented read-based Entire genome  Based on GT-AG splice AGNGT None 135 200,000
sites
CIRIquant Based on CIRI2, with Entire genome  Based on GT-AG splice AGNGT None 135 200,000
improved quantification sites
ecircscreen Integrative® Entire genome  Based on consensus from AGNGT None None None
tools
find_circ Segmented read-based Entire genome®  Based on mapping to AGNGT None None 100,000
genome®
KNIFE Candidate-based Entire genome  Based on linear annotation  Non-canonical >2 None 1,000,000
NCLscan Candidate-based Known splice Based on linear annotation  Non-canonical None 100 None
sites
NCLcomparator  Filtered results of NCLscan Known splice Based on linear annotation  Non-canonical None 100 None
sites
PFv2 Segmented read-based Entire genome  Based on mapping to AGNGT, ACNCT None 50 1,000,000
genome
Sailfish-cir Based on CIRI2 v2.0.6 Entire genome  No strand reported AGNGT, ACNCT No BSJ 135 200,000
counts
reported
segemehl Segmented read-based Entire genome  No strand reported Non-canonical >5 None 200,000

2Some tools did not report strand information for this study, but the (updated) circRNA tool might report circRNA strand information. "The BSJ count and the minimum and maximum circRNA
length filters are the filters used for this specific study. The user can choose these parameters freely. Of note, the minimum and maximum length filters are based on the estimated circRNA
length with introns, calculated by subtracting the start position from the end position of the BSJ. °Integrative tools combine the results of multiple circRNA detection tools. This includes
CirComPara2 (combining CIRCexplorer2 (v2.3.8), Segemehl (v0.3.4), CIRI2 (v2.0.6), DCC (v0.4.8) and find_circ (v1.2), and then filtering all circRNAs detected by at least two methods) and
ecircscreen (combining CIRI2 (v2.0.6), circRNA_finder (v1.2), PFv2 (v2.0.0), find_circ (v1.2) and CIRCexplorer (v1.1.10), and then filtering all circRNA detected by at least three methods). “Inferred

based on publication and available code.

fragmented-based approach (also called the segmented read-based
approach)'>"*. The former approach uses a reference list of potential
BSJ sequences, often based on all possible combinations of known
annotated exonsin a gene. This approach s therefore limited to spe-
cieswithannotated genomes and to previously annotated genes and
will detect only circRNAs that use the same splicing sites as the linear
RNAs. The latter approach splits unmapped sequencing reads into
shorter sequences and remaps these against the reference genome.
Last, integrative tools, such as CirComPara2 and ecircscreen, combine
the results of multiple tools.

The number of detected circRNAs differs greatly between tools. A
total of 315,312 unique circRNA predictions (corresponding to 1,137,099
unique circRNA-strand-tool-sample tuples) were detected using 16
different tools based on deeply sequenced total RNA from three human
cancer cell lines (Supplementary Table 2, because of large file size, avail-
ableonlyathttps://github.com/OncoRNALab/circRNA_benchmarking).
The circRNA detection tools were run by their developers (details in
Methods and Supplementary Notes). Thereis a striking almost 40-fold
difference between the tool with the highest number of predicted

circRNAs (circseq_cup with 58,032 circRNAs) and the tool with the
lowest number of predicted circRNAs (segemehl with 1,372 circRNAs)
for one of the cell lines (Fig. 2b shows results for HLF (human lung
fibroblast) cells; similar results for the other cell lines are shown in
Supplementary Fig. 1).

Most circRNAs are characterized by low BSJ counts. CircRNA
abundanceisreflected by the BS] count, whichis the number of reads
uniquely assigned to agiven circRNA. The majority of circRNAs (86.6%)
that are detected have a BS] count below 5 (Fig. 2b), with only 46.1% of
the detected circRNAs having aBS) count of at least 2 (detailed distribu-
tioninSupplementary Fig. 2). Toincrease confidence, circRNA_finder
and segemehl filtered their results to report only circRNAs with a BS)
count of at least 5, and CirComPara2 and KNIFE filtered for circRNAs
with aBS) countofatleast 2. Circtoolsfiltered circRNAs with a BSJ count
ofatleast2inatleasttwosamples. Of note, Sailfish-cir does not report
raw BSJ counts, but transcripts per million (TPM) instead. The similar-
ity of circRNA BSJ counts between tool pairs is reasonable, according
to regression analysis (linear models with median r?= 0.86, median
slope =0.70, all P< 0.001, Supplementary Fig. 3).

Nature Methods | Volume 20 | August 2023 | 1159-1169

1162


http://www.nature.com/naturemethods
https://github.com/OncoRNALab/circRNA_benchmarking

Analysis

https://doi.org/10.1038/s41592-023-01944-6

CircRNA detection tools predict different sets of circRNAs. Half of
allcircRNAs in this study (49.9%) are reported only by one tool, which
is largely due to circseq_cup’s high number of uniquely predicted
circRNAs (Fig. 2c for HLF cells, similar results for the other cell lines are
shown in Supplementary Fig. 4). The overlap of circRNA predictions
among different tools is visualized in a heatmap for each cell line in
Supplementary Fig. 5. Of16 circRNA detection tools, eight exclusively
report circRNAs flanked by canonical splice sites (with an AGNGT
pattern, where AG is the splice acceptor, N represents the circRNA
sequence and GT is the splice donor) (Fig. 2d). CirComPara2, circseq_
cup, Sailfish-cir and segemehl do not report circRNA strand orientation,
which explains most of the ACNCT patterns (reverse complement of
AGNGT) given that all of their predicted circRNAs were automatically
assigned to the positive strand to retrieve the surrounding splicing
sequence. Two-thirds of all predicted circRNAs in this study (68.5%) are
novel compared with a set of previously reported circRNAs extracted
from13 published circRNA databases (Circ2Disease, circad, CircAtlas,
circbank, circBase, CIRCpediav2, CircR2disease, CircRiC, circRNADDb,
CSCD, exoRBase, MiOncoCirc and TSCD) (Supplementary Fig. 6)*°. Of
note, approximately half of these novel circRNA candidates originate
solely from circseq_cup. Looking at the tools individually, circseq_cup,
KNIFE, NCLscanand NCLcomparator report a higher number of novel
circRNAs (87.8%,53.9%, 53.4%, 53.3%, respectively) compared with the
othertools (median,19.7%; interquartile range (IQR): 4.9-34.8%). Tools
were further compared based on the predicted circRNA length, strand
information, correspondenceto linear annotation and predicted exon
composition (Supplementary Datal-4 and Supplementary Figs. 7-10).
No notable differences were observed between tools, except for CIRI2
and PFv2, which have a higher number of circRNAs for which no canoni-
cal linear annotation match was found, compared with the other cir-
cRNA detection tools (that is, the BS) position of the circRNA did not
match any knownintron-exon splicing position based onthe canonical
transcripts from Ensembl GRCh38.103). Across all tools, 53.7% of circR-
NAs uniquely match one canonical linear transcript, 10.3% match more
than one canonical transcript, and 35.9% do not match any canonical
transcript. CircRNAs were found for 17,461 different canonical human
transcripts, demonstrating the pervasive nature of back-splicing (28.9%
of canonical transcripts from Ensembl GRCh38.103). Of note, thisisan
underestimation, given thatfor 46.3% of circRNAs no (unique) annota-
tion match could be found.

CircRNA validation with empirical methods

CircRNA primer design inherently introduces a selection bias.
Based on previous experiments (Supplementary Data 5 and Sup-
plementary Fig. 11), for each tool we aimed to select 80 random
high-abundance circRNAs with aBSJ count of at least 5and 20 random
low-abundance circRNAs with a BSJ count below 5. Importantly, the
precision values for both abundance groups (described in the follow-
ing paragraphs) cannot be directly compared due to differences in

thesamplesize. Of note, circRNA primer design inherently introduces
a bias caused by the discarding of primer pairs (and therefore cir-
cRNAs) with predicted off-target amplification (Supplementary
Data 6 and Supplementary Fig. 12). A selection of 1,560 circRNAs
was obtained (Supplementary Table 3, BSJ count distributionin Sup-
plementary Fig. 13). Given that some circRNAs were selected more
than once (by chance, for different tools or in different cell lines),
the total number of unique circRNA-sample pairs was 1,516, from
here on termed ‘selected circRNAs’ (detailed description in Supple-
mentary Fig.14). Furthermore, asecond biasis introduced within the
group of low-abundant circRNAs, given that three tools (CirComPara2,
circtools and KNIFE) filter circRNAs with a BSJ count of at least 2,
whereas all other tools in this category also allow circRNAs with a
BSJ count of 1.

High BSJ detection precision using RT-qPCR validation. Ofthe 1,516
selected circRNAs, 1,479 (97.6%) could be validated with RT-qPCR,
that is, the primer pair flanking the BS]J site resulted in a detectable
amplicon. For the low-abundance circRNAs there is some variation in
the tool-specific precision values (median, 95.0%; range, 80.0-100%),
which is expected. High-abundance circRNAs have high RT-qPCR
precision for most tools (median, 98.8%; range 90.0-100%) (Fig. 3a;
the cumulative plot of the RT-qPCR precision as a function of the
BSJ count is shown in Supplementary Fig. 15). It is important to note
that RT-qPCR-based validation is the net result of a successful primer
pair and the actual presence of a sufficiently abundant circRNA in the
amount of RNA tested.

RNase R treatment degrades 1in 16 predicted circRNAs. RNase
R was used as a second, more stringent validation approach. RNase
R selectively degrades linear transcripts, ensuring that the RT-qPCR
primers amplify a circular molecule. For 112 out of 1,516 selected
circRNAs (7.4%), RNase R treatment could not be evaluated because
their abundance in the untreated sample was too low, leavingnoroom
to confirm RNase R degradation in the event of a false-positive cir-
cRNA (hence labeled as NAs). In the remaining set of 1,404 predicted
circRNAs, 1,319 circRNAs (93.9%) could be successfully validated using
RT-qPCRonRNase R-treated RNA. For most tools, high RNase R preci-
sionwas observed for high-abundance circRNAs (median, 96.3%; range,
74.0-100%). PFv2 hasthe lowest precision (74.0%). For low-abundance
circRNAs, lower precision was observed (median, 86.7%; range, 50.0—
100%) (Fig. 3a; the cumulative plot of the RNase R precision as a func-
tion of the BSJ count is shown in Supplementary Fig. 15). Of note, the
number of circRNAs per tool in this binis lower than the original 20 that
were selected, given that more circRNAs were excluded due to abun-
dancy being too low (resulting in only 10-18 circRNAs per tool, with a
median of 14 circRNAs). A comparison with matched RNase R-treated
and -untreated sequencing datais givenin Supplementary Data7 and
shows that the RNase R precision calculated from sequencing results

Fig.3| The precision of circRNA detection tools is generally high and

similar, whereas tools largely differ with respect to the number of predicted
circRNAs. a-c, The plots are separated based on circRNA BSJ] count below 5
(low-abundance, in blue, 20 circRNAs selected per tool) or a BS) count of at

least 5 (high-abundance, in orange, 80 circRNAs selected per tool). Sailfish-cir
reports TPM (transcripts per million) instead of BSJ count, and is therefore shown
separately. Given that circRNA_finder and segemehl do not report any circRNAs
withaBSJ count <5, these tools are not included in the blue bar plots. a, CircRNAs
were validated using three different techniques: RT-qPCR detection, resistance
to degradation by RNase R, and amplicon sequencing (seq). Low-abundance
circRNAs are ingeneral more difficult to validate. Of note, the precision for
low-abundance circRNAs is based on a limited set of circRNAs. High-abundance
circRNAs have good precision for most tools and most validation methods.
Theerror bars represent the 95% confidence intervals (CI). A set of circRNAs

was excluded because their abundance was too low to enable assessment of

their resistance to RNase R, resulting in a variable number of circRNAs per
toolinstead of 20 or 80 for low-abundance and high-abundance circRNAs,
respectively (range, 10-18 or 71-80 circRNAs per tool, respectively, details
inSupplementary Table 6). Arandom subset of circRNAs was included in the
amplicon sequencing experiment, resulting in a variable number of circRNAs per
tool foramplicon sequencing validation as well (range, 11-20 or 54-74 circRNAs
per tool, respectively, details in Supplementary Table 6). b, The vast majority

of circRNAs produce the same results based on the three different validation
methods. However, some circRNAs have conflicting results. For example, there
are13 circRNAs that are detectable by RT-qPCR but also are degraded upon
RNaseR (RR) treatment and for which the primers seem to amplify the wrong
product. ¢, The compound precision is used to calculate the theoretical number
of true-positive circRNAs by multiplying it with the original number of circRNAs
detected by that tool (that is, the extrapolated sensitivity) (shown for HLF; similar
results for the other cell lines are shown in Supplementary Fig. 26).
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is mostly high and similar between tools, with PFv2 having the lowest
precision (Supplementary Figs. 16-19 and Supplementary Tables 4
and 5, because of large file size, available only at https://github.com/
OncoRNALab/circRNA_benchmarking).

BSJ count <5 (n = 20")

Amplicon sequencing is the most stringent validation method.
The RT-qPCR amplicons of the untreated RNA were sequenced for
further validation of the circRNAs. Arandom subset of circRNAs (1,179
of1,516,77.8%) wasincluded in the amplicon sequencing experiment,
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Fig.4|The intersection or union of two circRNA detection tools decreases
the number of false positives, or increases the overall number of detected
circRNAs, respectively. a, CircRNAs detected by multiple tools generally have
higher precision. However, the often-used practice of using the intersection of
two tools is not necessarily a guarantee of avoiding false-positive results. b, By
considering the union of two circRNA detection tools, the number of circRNAs
can besignificantly increased while keeping the number of false-positive
predictions low (shown for the HLF cell line; similar results for the other two
celllines are shown in Supplementary Fig. 37). For the y-axis, the percentage of
detected circRNAs is calculated by dividing the number of circRNA detected
by that tool combination by the total number of predicted circRNAs for that

T
98%

sample taking the union of all tools (13,087 circRNAs for the HLF sample). For

this analysis, the compound precision of high-abundance circRNAs was used.
Some circRNA detection tools are integrative and combine the results of multiple
other tools. Itis therefore assumed that an integrative tool would have large
similarities withits underlying tools. However, a difference in tool version and
filtering canstill produce a different set of circRNAs. For example, CirComPara2
isanintegrative tool that combines CIRCexplorer2, CIRI2, DCC and find_circ, but
nevertheless, the combination of CirComPara2 and CIRCexplorer3 still produces
asignificantincreasein detected circRNAs (corresponding to 10% of all circRNA
predictions for that cell line).

resultinginavariable number of circRNAs per tool instead of 20 or 80
forlow-abundance and high-abundance circRNAs, respectively (range,
11-20 or 54-74 circRNAs per tool, respectively). For this subset of 1,179
circRNAs, 1,014 circRNAs (86.0%) could be readily validated with ampli-
consequencing, thatis, the majority of reads aligned to the expected
BSJ sequence. Most tools have similar amplicon sequencing precision
for high-abundance circRNAs (median, 95.5%; range, 30.0-100%), with
PFv2having averylow (30.0%) amplicon sequencing precision. Of note,
giventhat PFv2 was developed toretain repeat sequences, itis expected
toresultin more false positives. The most obvious are caused by linear
read-through between exonsin neighboring tandemly repeated gene
clustersandinterspersed repeats, and these tend to be abundant. For
low-abundance circRNAs, performance is more diverse, with gen-
erally lower amplicon sequencing precision (median, 73.3%; range,

17.6-94.1%) (Fig. 3a; the cumulative plot of the amplicon sequencing
on-target amplification rate and the cumulative plot of the amplicon
sequencing precision as a function of the BSJ count are shown in Sup-
plementary Figs. 20 and 15, respectively).

Different validation methods should be used in concert. Although
the threevalidation strategies were used independently, itisinteresting
to evaluate to what extent they support each other (Fig. 3b and Sup-
plementary Figs. 21and 22). Considering 1,103 circRNAs for which all
three validation results are available, 957 circRNAs (86.8%) pass all vali-
dation methods, 128 circRNAs (11.6%) fail one or two of the validation
methods, and 18 circRNAs (1.6%) fail all three validation methods. This
shows that orthogonal validation with different empirical approaches
isimportant tocompensate for their inherent limitations. Itis beyond
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Table 2| CircRNA research recommendations

circRNA detection

1. An orthogonal validation method must be used to validate a predicted circRNA; gPCR validation on its own is not sufficient, at least

gPCR+RNase R treatment or preferably gPCR+amplicon sequencing should be used.
2. Filtering based on a minimum BSJ count is recommended to increase the likelihood of successful empirical validation.

circRNA validation

3. For a precision-focused approach, the intersection of two tools with a high individual precision (for example, 290%) should be used.

4. For a sensitivity-focused approach, the union of two tools with a high individual precision (for example, 290%) should be used.
5. The choice of tools to be combined may be informed based on the tools’ underlying principles (circRNA detection approach, reliance on

linear annotation and canonical splicing, and filtering).

circRNA tool
development

6. Tools should report the originating strand information, the BSJ count evidence, and the chromosomal start and end position of the BSJ.

circRNA tool
validation

7. For evaluation of sensitivity, novel and updated tools are encouraged to use the empirically validated set of 957 true-positive circRNAs.
8. For evaluation of precision, a random set of 100 predicted circRNAs should be validated with empirical methods.

the scope of this study to investigate why there are some discrepan-
ciesamongthe validation results (some hypotheses are consideredin
the Discussion). First, they are rare (for most circRNAs, the different
methods completely agree); and second, the same methods are used to
compare the tools, whereby no tool should be favored over the other.

The three orthogonal validation methods were combined to label
eachcircRNA as atrue or false positive and the compound precision was
calculated for each tool. Similar to the separate precision values, the
compound precision is high and similar for most tools when looking
at high-abundance circRNAs (median, 93.1%; range, 27.1-98.3%; IQR:
90.5-95.3%), and lower and more variable for low-abundance circRNAs
(median, 63.6%; range, 5.9-88.2%; IQR: 53.8-76.5%) (Supplementary
Figs.15and 23).

CircRNA detection tools differ greatly in sensitivity. Tool sensitiv-
ity was evaluated using two different methods. In the first method,
sensitivity was calculated based on the total number of true-positive
circRNAs (n =957) (Supplementary Figs. 24 and 25). Of note, this sen-
sitivity metric should be used with caution because it is based on a
biased set of circRNAs collected from the 100 circRNAs selected per
tool, which overlap and are not arepresentative random sample of all
circRNAs (see Methods). In the second method, the theoretical number
of true-positive circRNAs for each tool was computed by multiplying
the totalnumber of detected circRNAs by the compound precision (that
is, the extrapolated sensitivity) (Fig. 3c for HLF cells; similar results
for the other cell lines are shown in Supplementary Fig. 26). Thereisa
significant positive correlation between the sensitivity values for the
two methods (Spearman rank correlation of 0.84 with P< 0.001,S =58,
for low-abundance circRNAs, and a Spearman rank correlation of 0.80
with P<0.001, S =113, for high-abundance circRNAs). Both methods
show great variability in tool sensitivity, with a median sensitivity of
75.1% (range, 29.7-87.1%) for low-abundance circRNAs and 65.7% (range,
18.7-87.4%) for high-abundance circRNAs. To visualize the relation-
ship between sensitivity and compound precision, a precision-recall
(sensitivity) dot plot for all tools is shown in Supplementary Fig. 27.

Allmetrics described above ((compound) precisions and sensitiv-
ity) and the tool ranking for each metric are available in Supplementary
Table 6. The user can easily filter and order the circRNA detection
tools based on their preferences. Reproducibility evaluations were
performed and are described in Supplementary Data 8-10 (Supple-
mentary Figs. 28-32).

Evaluation of precision as a function of circRNA annotation. To
evaluate the precision as afunction of circRNA annotation, we restrict
the analyses to high-abundance circRNAs with information for all
validationtechniques. Furthermore, astrict validation definition was
used, whereby all circRNAs failing for at least one technique were
classified as unvalidated. CircRNAs previously described in data-
bases have a higher likelihood of being validated (x*=181.0, d.f.=1,
P<0.001, oddsratio (OR) =13.1). Nevertheless, false-positive circRNAs

according to our data are still present in multiple published databases
(Supplementary Figs.33-35). For example, the false-positive circRNA
chr6: 47526627-47554766 (hg38, 0-based) is present in CircAtlas (as
hsa-CD2AP_0048) and in exoRBase (as exo_circ_65199). Adifferencein
circRNA validation was observed depending on the splicing pattern,
with better validation of circRNAs surrounded by canonical splice
sites (x*=45.4,d.f.=1, P<0.001, OR = 5.0). Similarly, circRNAs that
originate from aregion with an annotated linear transcript have higher
validation rates (x*=185.8, d.f.=1, P<0.001, OR =17.1). Surprisingly,
single-exon circRNAs had significantly lower validation rates than
multi-exon circRNAs (x*=20.0, d.f.=1,P<0.001, OR = 3.8). Last, while
tools with a candidate-based approach seem more precise than tools
using the segmented read-based approach (x*=9.4,d.f.=1,P=0.0022,
OR=2.6), we cannot be sure that these results are not confounded by
other algorithmic differences.

Evaluation of sensitivity in circRNA annotation. There is a signifi-
cantly higher sensitivity for tools reporting circRNAs surrounded by
canonical splicesites, resultinginamedian difference in sensitivity of
38.5% (two-sided Mann-Whitney U= 55, P=0.0022, large effect size of
0.78,95% Cl: 0.56-0.85, n1 =11 (canonical), n2 = 5 (non-canonical), only
high-abundance circRNAs). However, nolink could be found between
sensitivity and tool approach, use of linear annotation, strand annota-
tion method or BSJ count filtering.

Evaluation of tool combinations to improve performance

For the combination of two or moretools, both theintersectionand the
union have been proposed” (Supplementary Tables 7 and 8). Although
not evaluated here, the increased time and resource consumption
should also be taken into account when considering the use of mul-
tiple tools. A list of the top-performing combinations is available in
Supplementary Table 9 and can be used as a reference.

A circRNA predicted by two tools can be a false result. Figure 4a
showsthat circRNAs uniquely detected by asingle tool generally have
lower precision. Inline with this, circRNAs detected by at least two tools
have a higher chance of being validated (x*=333.1, d.f.=1, P<0.001,
OR =53.8). By contrast, out 0of 1,380 unique circRNAs detected by at
least two tools, 7 circRNAs (0.5%) failed all three validation methods
and 137 (9.9%) failed at least one of the validation methods (Supple-
mentary Fig. 36), showing that the practice of using the intersection
isnot aguarantee to avoid false-positive results.

The union of tools increases the number of true circRNAs. To maxi-
mize detection sensitivity and maintain precision, we evaluated the
union of pairs or triples of circRNA detection tools. Generating all pos-
sible combinations of the better tools with individual compound pre-
cision = 90% for high-abundance circRNAs (n =12 tools) consistently
resultsin higher detection sensitivity while maintaining a high weighted
precision. The median increase in the number of detected circRNAs.
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for combinations of two or three tools, is 37.0% (IQR:16.5-129.7%) and
79.6% (IQR:33.1-215.7%), respectively. In other words, when combining
very precise tools, the number of false positives does not counteract the
gaininadditional true positives. A subset of tool combinations with an
increase of at least 1,000 circRNAs is shown in Fig. 4b (shown for HLF
cells; similar results for the other cell lines are shown in Supplementary
Fig. 37; the combination of three tools is shown in Supplementary
Fig.38).One obvious consideration when selecting two different tools
istheir circRNA detection approach, their reliance onlinear annotation
and their filtering methods. For example, when combining two tools
with a different detection approach (the pseudo-reference-based or
fragmented-based approach), the median increase in the number of
detected circRNAs is 61.1%, compared with 35.4% for two tools with
the same detectionapproach (two-sided Mann-Whitney U = 58,554.5,
P<0.001, small effect size 0f 0.16,95% Cl: 0.08-0.23,n1 = 336,n2 =294).
Similarly, when combining two tools with the same splice site settings
(both canonical or both non-canonical), the median increase in the
number of detected circRNAs (32.6%) is significantly smaller than that
for the combination of two tools with different splice site settings (one
canonical and one non-canonical) (76.2%) (two-sided Mann-Whitney
U=65,356.5, P<0.001, small effect size of 0.28, 95% CI: 0.21-0.35,
nl1=300,n2=330).Asimilar analysis for the combination of tools that
rely or do notrely on linear annotation was not significant.

Discussion

Multimodal orthogonal validation of bioinformatics tools that predict
circular RNAs from total RNA sequencing data is currently lacking.
Hence, their precision and sensitivities are unknown and scientific
dataare confounded with false-positive and false-negative predictions.
Toaccommodate thislacuna, we set up alarge-scale international col-
laborative circRNA detection tool benchmarking study (Fig. 2a). First,a
deeply sequenced total RNA sequencing dataset was processed by the
developers of 16 different circRNA detection tools. Next, three empiri-
cal validation strategies were used to evaluate a random selection of
1,560 circRNAs representing each tool: first, RT-qPCR to determine
whether the candidate circRNA BSJ sequence was detectable; second,
RNase R treatment to confirm that the detected RNA was most likely to
becircular and notlinear; and third, amplicon sequencing to confirm
the circRNA BSJ sequence. Of note, both circRNART-qPCR and RNAse
Rvalidation protocols were extensively validated**'.

The precision is similarly high among tools (Fig. 3a), especially
when considering the subset of high-abundance circRNAs (with BSJ
count >5). In contrast, the number of predicted circRNAs and the
sensitivity varies greatly between tools, in line with previous studies
based onsimulated data™"*"* (Supplementary Data 11 and Supplemen-
tary Figs. 39 and 40). The striking differences in sensitivity are in part
dependent onthe operator applying BSJ count filters.

The three validation methods each have their own strengths and
biases, with conflicting results for several circRNAs (Fig. 3b, discussed
indetail in Supplementary Discussion 1). In total, 957 (86.8%) circRNAs
are validated by all three methods. However, 22 circRNAs are validated
withqPCR and ampliconsequencing but are degraded by RNaseR (witha
decrease of concentration of at least 87.5%, that s, adifference of at least
3cycles). A possible explanation could be that some bonafide circRNAs
are susceptible to RNase R degradation® or that the primers amplify a
mixture of circular and linear RNA. Another subset of 92 circRNAs pass
RT-gPCRyvalidationand RNase R validationbut failamplicon sequencing.
These could be (repetitive) RNAs resistant to RNAse R due to a second-
ary structure, either internal or through base pairing with orthologs®.
These examples underscore theimportance of using different validation
methods to compensate for their intrinsic limitationsand toincrease the
validation status confidence (as previously suggested in ref. 8).

Although long-read sequencing has been implemented to study
full-length circRNAs***, the bulk of currently available data is still
short-read sequencing. Therefore, thisbenchmarking study evaluated

circRNA detection tools for short-read sequencing data, which typi-
cally report circRNAs by their BSJ position (chr, start, end, strand).
However, it remains unknown whether the detected BS) corresponds
toonecircRNA, or multiple alternatively spliced circRNAs with differ-
ent exon and intron compositions. Hence, the prediction precision
reported here might be influenced by more than one circRNA with
the same BS]J. Given that this study is focused on circRNA detectionin
short-read sequencing data, theinternal circRNA composition was not
evaluated. Furthermore, nodistinction can be made between circRNAs
onthe positive strand or negative strand using RT-qPCR and amplicon
sequencing (9.4% of circRNAs were reported to originate from different
strands according to different tools).

Based on a pilot study (Supplementary Data 5 and Supplemen-
tary Fig. 11), a cut-off was set at a BS] count of 5, given that circRNAs
under this cut-off approached the qPCR limit to reliably detect RNase
R-based degradation of falsely predicted circRNAs. Although very deep
sequencing of a large RNA input amount was performed, it is beyond
the scope of this study to evaluate whether the BSJ count should be
reconsidered with regard to the sequencing depth. However, given
that the majority of predicted circRNAs have a BSJ count below 5, we
decided toinclude at least a subset of these low-abundance circRNAs
to calculate the corresponding prediction precision. It is no surprise
that the precision for low-abundance circRNAs is significantly lower
than that for high-abundance circRNAs (x*=76.7,d.f.=1, P< 0.001,
OR =3.8). This differenceis likely to be due to the detection limits of the
applied validation strategies in conjunction with the sampling bias of
low-abundance analytes, and not due to inherently more false-positive
predictions for circRNAs with alower count. Of note, it canbe presumed
that weakly expressed circRNAs are less relevant for both functional
studies and biomarker research.

Focusing on high-abundance circRNAs, interesting associations
were found between circRNA annotation and validationrates. As such,
circRNAs had higher validation rates when they were detected by mul-
tiple tools, when they were previously reportedina circRNA database,
when they were surrounded by canonical splice sites, and when they
originate from a region with an annotated linear transcript. CircRNA
detectiontools with a candidate-based approach are more precise than
tools using the segmented read-based approach, which isin line with
the higher validation likelihood of circRNAs originating from known
linear genes and surrounded by canonical splice sites.

Based on our study, we compiled a list of recommendations for
circRNA detection and validation, and for the future development of
circRNA detection tools and their performance evaluation (Table 2).
Ideally, publicly available (spike-in) reference material (consisting
of known synthetic circRNAs) should be used to benchmark existing
and novel circRNA detection tools. However, such reference material
is currently not available. Given that the main goal of this study was
to perform aneutral assessment of circRNA detection tool sensitivity
and precision, the developers of the tools were asked to run the tools
themselves. Therefore, execution time, memory usage and ease of use
could not be compared and were not assessed here.

Furthermore, this study resulted in a circRNA resource contain-
ing > 315,000 circRNAs detected by different tools in three human
cancer cell lines from different tissue origins and provides validation
results for1,500 circRNAs that canbe used as areference for the devel-
opmentof new orimproved circRNA detection tools. Finally, our study
can also serve as an example framework for empirical validation of
benchmarking results from other bioinformatics tools in the future.

Online content
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Methods

Study set-up

Given that this study involves the execution and evaluation of circRNA
detection tools, the co-authors can be divided into two groups: an inde-
pendentgroup (withno circRNA detectiontool of their own) thatinitiated
and designed the study and performed all of the wet-lab work and data
analysis (the validation co-author group), and a group of tool developer
co-authorswhodetected circRNAs using their own circRNA detectiontools
according to their expertise (the circRNA prediction co-author group)
(detailsin Author Contributionsection). During the study, meetings and
emails were used to share the results (initially in a blinded manner) and
discuss the final manuscript with the circRNA prediction co-authors.

Cell culture

Three cancer cell lines of different cellular origin were randomly chosen
as biological replicates. Ethics approval was obtained for this study
(EC014-202, Ghent University Hospital) and the cell lines were pur-
chased fromthe JCRB (Japanese Collection of Research Bioresources)
Cell Bank (HLF and NCI-H23) or ECACC (European Collection of
Authenticated Cell Cultures) (SW480). SW480 cells were cultured at
37°C, 0% CO, in Leibovitz’s L-15 medium (31415-029, ThermokFisher).
HLF cellsand NCI-H23 cells were cultured at 37 °C, 5% CO, in DMEM, low
glucose, GlutaMAX Supplement, pyruvate (21885025, ThermoFisher)
and RPMI 1640 Medium, HEPES (52400041, ThermoFisher), respec-
tively. Also, 10% FBS (F7524, Sigma) and 1% penicillin-streptomycin
(10,000 U mlI™) (15140122, ThermoFisher) were added to all three media.

RNAisolation

RNA was isolated from the cells using the miRNeasy Mini kit (217004,
Qiagen) according to the manufacturer’s instructions, including the
optional on-column DNase treatment (79254, Qiagen). For each cell
line, a sufficient number of cells was cultured to be able to collect
a minimum of 330 pg RNA. The RNA concentration was measured
spectrophotometrically using a NanoDrop instrument, and the RNA
integrity was evaluated using the Fragment Analyzer system. For each
cell line, the RNA was pooled and aliquoted (1,000 ng RNA in 100 pl
nuclease-free water per aliquot) and stored at -80 °C, making a uniform
RNA collection to use for all downstream experiments.

RNase R treatment, library preparation and sequencing

For each cell line, two aliquots of 1,000 ng input RNA (in 10 pl
nuclease-free water) were used. First, ribosomal RNA was removed
with the NEBNext rRNA Depletion Kit (E6350X, New England Biolabs),
following the manufacturer’s instructions. Next, RNAse R treatment
was performed according to our previously described protocol®.
In summary, one aliquot of each cell line was treated with RNase R
(RNR0O7250 (250 U), Lucigen), and one aliquot of each cell line was
treated as a buffer control. This was followed by a clean-up step using
Vivacon 500, 10,000 MWCO (molecular weight cut-off) Hydrosart
columns (VNO1HO2, Sartorius). Subsequently, the NEBNext Ultra Il
Directional RNA Library Prep Kit for lllumina (E7760L, New England
Biolabs) was used in combination with the NEBNext Multiplex Oligos
for lllumina (E7600S, New England Biolabs) to index and prepare the
samples for sequencing. Thelibrary preparation protocol was adjusted
to obtain relatively long insert sizes (average size of 636 nucleotides
measured using the Fragment Analyzer system): RNA fragmentation
of 7.5 min; and a first-strand complementary DNA synthesis elonga-
tion step of 50 min instead of 15 min. The last bead clean-up step was
performed twice to completely remove all indexes from the samples.
Finally, the samples were pooled equimolarly and sequenced on a
NovaSeq 6000 instrument using a NovaSeq 6000 S1 Reagent Kit v1.5
(300 cycles) (20028317, lllumina), resulting in approximately 300
million paired-end 150-nucleotide reads per sample. Raw FASTQ files
arestoredinthe Sequence Read Archive (PRJNA789110: SRX13414572
(untreated HLF), SRX13414573 (untreated NCI-H23), SRX13414574

(untreated SW480), SRX13414575 (RNase R-treated HLF), SRX13414576
(RNase R-treated NCI-H23), SRX13414577 (RNase R-treated SW480)).

CircRNA detection
InNovember 2020 acomprehensive list of all published circRNA detec-
tiontools was compiled, and all developers were invited to collaborate.
Upon consent, they were asked to detect circRNAs using their own
circRNA detectiontool as appropriate for the datathat were provided.
The circRNA detection steps for each tool are detailed in the Sup-
plementary Notes. Often, the default parameters were used given
that most of the methods included in our benchmarking underwent
continuous development during the last several years and their param-
eters have been optimized for standard RNA sequencing data (asisthe
caseinthisstudy). We were unable to contact the authors of find_circ**
and decided to run this tool ourselves, given that it is one of the most
frequently cited and broadly used circRNA detection tools. Unfortu-
nately, other well-performing tools (according to refs. 10,14), such as
MapSplice®, could not be included. More recent tools, such as Circall®
and CYCLeR¥, have been published after the validation experiments
were performed, and are therefore notincluded.

After collecting all circRNA detection results, a uniform list of
circRNAs defined by their BS) position (chr, start, end, strand) and the
BSJ count for each tool was compiled (Hg38, 0-based).

CircRNA selection and primer design

Guided by a pilot experiment assessing circRNA RT-qPCR detect-
ability depending on circRNA abundance and RNA input amount
(Supplementary Data 5 and Supplementary Fig. 11), for each tool,
80 high-abundance circRNAs (with a BS] count of at least 5), and 20
low-abundance circRNAs (with a BSJ count below 5) were selected (as
two separate count bins). Primer pairs were designed using our primer
design tool CIRCprimerXL®'. All primer sequences are available in
Supplementary Table 3. If no primer pair could be designed for agiven
circRNA, a substitution was randomly selected from the complete
dataset, considering the BSJ countbin. In total, 1,560 circRNA-tool-cell
linetuples were selected. Giventhat some circRNAs were selected more
thanonce (for different tools) the total number of unique circRNA-cell
line pairsis 1,516, and the number of unique circRNAs (not taking into
account the strand) is 1,457 (Supplementary Fig. 14). Additionally,
most of the selected circRNAs are detected by multiple tools (for which
they were not selected). For the precision calculations, only the 20
low-abundance and 80 high-abundance circRNAs selected for aspecific
tool were used to evaluate that tool to maintain an equal number of
observations for each tool, even though more of its predicted circRNAs
might have been validated. However, for the sensitivity calculations,
the complete set of circRNAs had to be used (see below).

RNase Rand RT-qPCR

The RNA aliquots derived from the three cell lines were used for the
circRNA RT-qPCR validation. A total of 1,080 pl, 900 pl and 780 pl
RNA (100 ng pl™) was required to validate 579, 500 and 437 circRNAs
inHLF, NCI-H23 and SW480 cells, respectively. RNase R treatment was
performed according to our previously reported protocol*, adapted
for this large-scale experiment. Insummary, one RNA aliquot of a given
cell line was treated with RNase R (RNR07250 (250 U), Lucigen) and
another was treated as abuffer control, for atotal of 92 RNase R-treated
replicates and 92 buffer control replicates (2 x 36 for HLF, 2 x 30 for
NCI-H23 and 2 x 26 for SW480 RNA). All volumes were doubled during
the buffer and RNase Rreaction (total reaction volume of 20 pl). This
was followed by a clean-up step using Vivacon 500, 10,000 MWCO
Hydrosart columns (VNO1HO2, Sartorius). Next, reverse transcrip-
tion was carried out on the 184 separate replicates using the iScript
Advanced cDNA Synthesis Kit (172-5038, Bio-Rad), according to the
manufacturer’sinstructions. After reverse transcription, the cDONA was
diluted1:2and analiquot (2.5 pl) was further diluted 1:4 to evaluate the

Nature Methods


http://www.nature.com/naturemethods

Analysis

https://doi.org/10.1038/s41592-023-01944-6

success of the RNase R reaction for each individual replicate. For this,
ACTB and a known circRNA (chrl: 117402185-117420649) previously
described* (primer sequences available in Supplementary Table 10)
were measured with qPCR using 2.5 pl 2x SsoAdvanced Universal SYBR
Green Supermix (172-5274, Bio-Rad), 0.5 pl forward and reverse primer
(5nM), and 2 pl cDNA per well, with qPCR duplicates. Once the RNase R
treatment was successfully validated, all cDNA replicates were pooled
per cell line and treatment condition. The cDNA was diluted 1:5 in 2x
SsoAdvanced Universal SYBR Green Supermix (172-5274, Bio-Rad). All
1,560 circRNA primer pairs were ordered from IDT in 96-well plates at
a concentration of 100 puM in nuclease-free water. All primers were
diluted 1:160 to obtaina 0.625 uM concentration. In each well of aqPCR
plate, 2 pldiluted primers and 3 pl cDNA-master mix combination were
added, resulting in an equivalent of 25 nginput RNA per qPCR reaction.
Each assay (circRNA) was measured four times toinclude qPCR dupli-
cates and to measure the abundance in both an RNase R-untreated and
-treated sample, resulting in atotal of more than 6,000 qPCRreactions.
Apipetting robot (EVO100, TECAN L) was used to dilute the primersand
fill the gPCR plates. The qPCR reactions were run on a CFX384 instru-
ment (Bio-Rad). Cq (quantification cycle) calling was done using the
Bio-Rad CFX Manager (v3.1), with the regression’ settings. The plates
were stored at —20 °C prior to amplicon sequencing.

Ampliconsequencing

After RT-qPCR, ~-80% of the circRNAs were randomly included for
amplicon sequencing. To construct the sequencing library, the ampli-
cons were pooled by combining 2 pl of the PCR reaction from one of
the untreated qPCR duplicates, per cell line. Next, the three samples
were cleaned using Vivacon 500, 10,000 MWCO Hydrosart columns
(VNO1HO02, Sartorius). The PCR product pools were analyzed using a
TapeStation 4150 (Agilent) and the concentration was measured using
aQubit fluorometer (ThermoFisher). Next, the three pools were diluted
innuclease-free water to obtain 50 pl samples with a concentration of
20 ng pl™ Finally, the samples were prepared for sequencing using
the NEBNext Ultra Il DNA Library Prep Kit for Illumina (E7645S, New
England Biolabs) and NEBNext Multiplex Oligos for lllumina (Dual Index
Primers Set 1) (E7600S, New England Biolabs). To retain allamplicons,
nosize selection was performed after adapter ligation,and 1.0x AMPure
XP beads (A63881, Beckman Coulter) in a1:1 sample : beads ratio was
usedinstead. After library preparation, the samples were pooled equi-
molarly. The pool was sequenced on a NextSeq 500 instrument using
a Mid Output Kit v2.5 (150 cycles) (20024904, lllumina), resulting in
approximately 25-30 million paired-end 75-nucleotide reads per library.

Data analysis

Dataanalysis was mostly done using R* (v4.2.1) inRStudio® (v2022.07.1).
The following R packages were used: tidyverse (v1.3.2), conflicted
(v1.1.0), ggrepel (v0.9.1), ggseqlogo (v0.1), europepmc (v0.4.1), gplots
(v3.1.3), ggpubr (v0.4.0), quantreg (v5.94), rstatix (v0.7.0) and UpSetR
(v1.4.0). For sequencing dataanalyses, including circRNA detection and
ampliconsequencing analysis, the Ghent University high-performance
cluster was used. For this, Python3 (v3.6.8) (ref. 40), Bowtie2 (v2.3.4.1)
(ref. 41), fastahack (v1.0.0), SAMtools (v1.11) (ref. 42) and BEDTools
(v2.30.0) (ref. 43) were used. The human reference transcriptome was
downloaded as a GTF file from Ensembl**. All data analysis scripts are
available at https://github.com/OncoRNALab/circRNA_benchmarking.

Amplicon sequencing data analysis

For the amplicon sequencing data analysis, first, a custom Python
script matches the primer sequences with the first 16-mer of each read
(forward and reversed) and generates a separate FASTQ file per primer
pair, containingall reads starting with that primer sequence. The FASTQ
readsare then clipped to remove the primer sequences. Next, all FASTQ
filesare mapped against the reference genome (Ensembl GRCh38.101)
supplemented with the theoretical BSJ amplicon sequences using

Bowtie2 with default settings. Last, the Bowtie2 BAM files are converted
to counts using another custom Python script and the percentage
on-target amplification was calculated for each primer pair.

Determination of orthogonal precision values and sensitivity
Several strategies to filter the data prior to precision and sensitivity
calculations were explored. For RT-qPCR, a circRNA was considered
validated when at least one of the untreated RNA samples had Cq above
10.Multiple variations of this threshold and a potential upper Cqthresh-
oldwere evaluated. For RNase R validation, asubset of circRNAs with at
least one untreated replicate with Cq below 32 was selected to ensure
that the enzymatic degradation of a false-positive circRNA could be
measured. A circRNA was considered validated upon RNase R treatment
if the difference in Cq between the untreated and treated RNA sample
was equal to or less than 3 cycles, based ona previous study*. Given that
there were two qPCR replicates available for each (un)treated sample,
the best-case scenario was used to calculate the difference in Cq by
subtracting the maximum untreated Cq replicate from the minimum
treated Cqreplicate. A circRNA with both untreated replicates having
Cqabove 32 waslabeled as NA. For amplicon sequencing, a circRNA was
considered validatedifthe primer pair was foundin atleast1,000 reads
andifatleast 50% of these reads matched the expected amplicon upon
mapping with Bowtie2. Forarandom subset of circRNAs, unintention-
allynoamplicon sequencing was performed; these were labeled as NA.
Adetailed description of the choice of performance metricsis availablein
Supplementary Data12 and 13. To calculate precision per tool, BS) count
binand validation method, the number of circRNAs that passed the vali-
dationwas divided by the total number of circRNAs that were not NA for
that validation method. We also determined the compound precision
by considering qPCR, RNase R treatment and ampliconsequencing. For
this, each circRNA was labeled as atrue positive (that is, validated by all
three methods), asafalse positive (thatis, not validated by at least one
ofthe methods), oras NA (thatis, notincluded inthe amplicon sequenc-
ing run). Based on this summarizing label, compound precision was
computed for each tool and BSJ count bin. The number of theoretically
true-positive circRNAs was calculated by multiplying the total number
of circRNAs predicted by that tool for that sample with the compound
precisionvalue (thatis, the extrapolated sensitivity). The sensitivity was
also calculated as the percentage of circRNAs that each tool detected
from the validated set of true-positive circRNAs (that is, the circRNAs
labeled astrue positives over all three methods). This metric should be
used with cautionbecauseitis based on abiased selection of circRNAs
due to the overlap between tools (Supplementary Data 12). To calcu-
late the sensitivity per BSJ count group, the median BSJ count of each
circRNA was used (given that most circRNAs are detected by multiple
tools and therefore have multiple BS] count values).

Annotation of circRNAs

To obtain the circRNA splice site information, the BSJ-flanking nucle-
otides were extracted from the reference genome using fastahack
(Ensembl GRCh38.104). To compare BSJ positions with known linear
annotation, BEDtools intersect was used with a list of canonical tran-
scripts from Ensembl with their positions based on the corresponding
Ensembl GTF file (Ensembl GRCh38.103). When a circRNA mapped to
multipleisoforms, the annotation was labeled as ‘ambiguous’ and the
circRNAwas not takeninto account for further annotation-based calcu-
lations and figures. The annotation was used to compute the length of
each circRNA excludingintrons, and the number of exons per circRNA.
CircRNAs smaller than their host gene exon were labeled ‘single-exon’
circRNAs. For thelength of each circRNA including introns, the BSJ start
position was simply subtracted fromthe BS) end position. Furthermore,
for each circRNA, annotation was added to indicate whether the BS)
startand end positions match known exon boundaries. When compar-
ing predicted circRNAs to circRNAs previously described in databases,
strand information was discarded.
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Combination of tools

To compare the circRNA tools, the union and intersection of all cir-
cRNAs predicted by each tool pair and triple were calculated. The
weighted precision was calculated for each combination of tools as fol-
lows: ((compound_precision_1 x total_n_1) + (compound_precision_2 x
total_n_2))/(total_n_1 + total_n_2). For this, strand information was
discarded, given that 4 out of 16 tools did not report circRNA strands
and would therefore have been excluded. These calculations were
performed for each cell line separately. To determine the correspond-
ence between tools, the Jaccard distance was calculated and heat-
map clusters were generated. The tools were compared based on the
presence or absence of a circRNA. Also, for the calculation of how
many tools detected a given circRNA, circRNA strand information
was discarded.

Statistical analyses

To evaluate the effect of circRNA characteristics on circRNA validation,
the chi-squared test was used (chisq.test) function in R). For every
test, the set of used circRNAs was slightly different depending on the
availability of annotationinformation. All of the tests had all expected
values in the contingency table above 5, therefore no correction for
small sample size was necessary. Seven different characteristics were
tested, and no multiple testing correction was performed. To evaluate
the effect of circRNA detection tool methods on sensitivity and to evalu-
ate the effect of the combination of tools with different approaches,
the two-sided Mann-Whitney U-test was used (rstatix::wilcox_test)
function in R). For correlation analysis between the sensitivity and
the extrapolated sensitivity, the Spearman rank correlation was used
(cor.test(method =‘spearman’) functioninR). For correlation analysis
between circRNA BSJ counts from different tools, or between circRNA
BSJ counts and Cq values, or between Cq values in different cell lines,
linear models were used (Im) function in R). To evaluate the contribu-
tion of the celllines (in contrast to the tools) to precision and sensitivity,
an ANOVA test was used (aov) functioninR).

Reporting summary
Furtherinformation onresearch designisavailableinthe Nature Port-
folio Reporting Summary linked to this article.

Data availability

We anticipate that this study will serve as a future resource for the
circRNA community. The information on all predicted circRNAs
(n=315,312), including the large extensively validated circRNA set
(n=1,516), along with the validation results are available in the GitHub
repository (https://github.com/OncoRNALab/circRNA_benchmarking)
and as Supplementary Tables. The set of circRNAs previously described
in databases (Circ2Disease, circad, CircAtlas, circbank, circBase,
CIRCpediav2, CircR2disease, CircRiC, circRNADb, CSCD, exoRBase,
MiOncoCirc and TSCD) is also included in the GitHub repository. All
databases were accessed in the context of a previous study®’. Raw
FASTQ files are stored in the Sequence Read Archive (PRJNA789110:
SRX13414572 (untreated HLF), SRX13414573 (untreated NCI-H23),
SRX13414574 (untreated SW480), SRX13414575 (RNase R-treated
HLF), SRX13414576 (RNase R-treated NCI-H23), SRX13414577 (RNase
R-treated SW480)). Source data are provided with this paper.

Code availability

Allofthe scripts used to compute the metrics described in the study and
generate the figures are available at https://github.com/OncoRNALab/
circRNA_benchmarking.
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For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
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The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name, describe more complex techniques in the Methods section.

A description of all covariates tested
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A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

X

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

O OO0 o o

L] X X
X X

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  For data collection, 16 circRNA detection tools were used: CIRCexplorer3 (v1.0), CirComPara2 (v1.0), circRNA_finder (v1.2), circseq_cup (v1.0),
CircSplice (no version number available) circtools (v1.2.0), CIRI2 (v2.6.0), CIRIquant (v1.1), ecircscreen (unpublished tool, no version number
available), find_circ (v1.2), KNIFE (v1), NCLscan (v1.6.5), NCLcomparator (v1.0.0), PFv2 (v2.0.0), Sailfish-cir (v0.11), and segemehl (v0.3.4). A
detailed description can be found in the Supplementary Notes.

Data analysis Data analysis was mostly done using R (v4.2.1) in RStudio (v2022.07.1). The following R packages were used: tidyverse (v1.3.2), conflicted
(v1.1.0), ggrepel (v0.9.1), ggseqlogo (v0.1), europepmc (v0.4.1), gplots (v3.1.3), ggpubr (v0.4.0), quantreg (v5.94), rstatix (v0.7.0) and UpSetR
(v1.4.0). For sequencing data analyses, including circRNA detection and amplicon sequencing analysis, the Ghent University high-performance
cluster was used. For this, Python3 (v3.6.8), Bowtie2 (v2.3.4.1) (12), fastahack (v1.0.0), SAMtools (v1.11), and BEDTools (v2.30.0) were used.
Cq calling was done using the Bio-Rad CFX Manager (v3.1), with the 'regression’ settings.

All data analysis scripts are available at https://github.com/OncoRNALab/circRNA_benchmarking.

Integrative tools combine the results of multiple circRNA detection tools. This includes CirComPara2 (combining CIRCexplorer2 (v2.3.8),
Segemehl (v0.3.4), CIRI2 (v2.0.6), DCC (v0.4.8), and find_circ (v1.2), and the filtering all circRNAs detected by at least two methods) and
ecircscreen (combining CIRI2 (v2.0.6), circRNA_finder (v1.2), PFv2 (v2.0.0), find_circ (v1.2), and CIRCexplorer (v1.1.10), and then filtering all
circRNA detected by at least three methods).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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The human reference transcriptome was downloaded as a GTF file from Ensembl. Ensembl GRCh38.101 was used to generate circRNA BSJ sequences (pseudo-
reference) for mapping of the amplicon sequencing results. Ensembl GRCh38.103 was used to retrieve a list of canonical transcripts and to compare circRNA BSJ
position with known linear annotation. Ensembl GRCh38.104 was used to retrieve the surrounding nucleotides of circRNA BSJ positions (to create Figure 2D).

Data availability statement:

We anticipate this study will serve as a future resource for the circRNA community. The information on all predicted circRNAs (n = 315,312), including the large
extensively validated circRNA set (n = 1,516), along with the validation results are available in the GitHub repository https://github.com/OncoRNALab/
circRNA_benchmarking and as Supplementary Tables. The set of circRNAs previously described in databases (Circ2Disease, circad, CircAtlas, circbank, circBase,
CIRCpediav2, CircR2disease, CircRiC, circRNADb, CSCD, exoRBase, MiOncoCirc, and TSCD) is also included in the GitHub repository. All databases were accessed in
the context of a previous study (30). Raw FASTQ files are stored in the Sequence Read Archive (PRINA789110: SRX13414572 (untreated HLF), SRX13414573
(untreated NCI-H23), SRX13414574 (untreated SW480), SRX13414575 (RNase R treated HLF), SRX13414576 (RNase R treated NCI-H23), SRX13414577 (RNase R
treated SW480)).

Human research participants

Policy information about studies involving human research participants and Sex and Gender in Research.

Reporting on sex and gender No human research participants were involved in this study.

Population characteristics No human research participants were involved in this study.
Recruitment No human research participants were involved in this study.
Ethics oversight No human research participants were involved in this study.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size All analysis are based on the following experiments:
n = 16 circRNA detection tools (all possible collaborators were contacted, and n=16 is the number of tools that agreed to participate)
n = 100 circRNAs per tool (used for precision calculations; according to the central limit theorem, a sample size of 30 is considered sufficient;
our sample size of 100 is sufficiently large and still feasible for wetlab validation)
n =722-1042 circRNAs (for evaluation of the effect of certain circRNA characteristics and the validation, a very large subset of circRNAs could
be used, ranging from 722-1042 circRNAs, depending on the available data)

Data exclusions  no data was excluded
Replication All analysis are based on the following experiments:
3 cell lines were used for biological variability and show similar results (discussed in Supplementary Data 8) (successful replication).

gPCR duplicates were used for technical variation and were mostly within a 0.5 Cq range of each other (successful replication).

Randomization  All analysis are based on the following experiments:
100 circRNAs per tool were randomly selected using the sample_n(100) fuction in R package tidyverse.

All gPCR assays were randomly spread over 20+ qPCR plates, to avoid batch effects using the code below:

linel  rows = sample(nrow(final_selection)) # using the R base sample() function, input: the total number of rows in the dataframe, output:
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all row numbers in a random order
line 2  final_selection = final_selection[rows,] # order the rows in the new random order

Blinding The independent validation co-author group does not have a circRNA detection tool of their own, and have no merit by preferring one tool
over the other. They were not blinded during any of the experiments/analysis. The circRNA assays were spread randomly of the qPCR plate
designs (not per tool). When sharing all the results with the 'tool developer co-authors group', the results were first shared anonymously (no
tool names were used, blinded), to ensure fair comparison and feedback. In a second analysis round, all details were shared and the 'tool
developer co-author group' was unblinded.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.
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Materials & experimental systems Methods

n/a | Involved in the study n/a | Involved in the study

|Z |:| Antibodies |:| ChIP-seq

|:| Eukaryotic cell lines |:| Flow cytometry

|:| Palaeontology and archaeology |Z| |:| MRI-based neuroimaging
g |:| Animals and other organisms

|Z |:| Clinical data

|Z |:| Dual use research of concern

Eukaryotic cell lines

Policy information about cell lines and Sex and Gender in Research

Cell line source(s) the cell lines were purchased from the JCRB Cell Bank (HLF and NCI-H23) or ECCAC (SW480)
Authentication STR genotyping
Mycoplasma contamination all cell lines frequently tested negative for mycoplasma using PCR

Commonly misidentified lines  pone
(See ICLAC register)
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