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Large-scale benchmarking of circRNA 
detection tools reveals large differences in 
sensitivity but not in precision
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Jakub Westholm    17, Li Yang    18, Chu-Yu Ye    4, Nurten Yigit    1, 
Guo-Hua Yuan    19, Jinyang Zhang    20, Fangqing Zhao    20, 
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The detection of circular RNA molecules (circRNAs) is typically based on 
short-read RNA sequencing data processed using computational tools. 
Numerous such tools have been developed, but a systematic comparison 
with orthogonal validation is missing. Here, we set up a circRNA detection 
tool benchmarking study, in which 16 tools detected more than 315,000 
unique circRNAs in three deeply sequenced human cell types. Next, 1,516 
predicted circRNAs were validated using three orthogonal methods. 
Generally, tool-specific precision is high and similar (median of 98.8%, 96.3% 
and 95.5% for qPCR, RNase R and amplicon sequencing, respectively) whereas 
the sensitivity and number of predicted circRNAs (ranging from 1,372 to 
58,032) are the most significant differentiators. Of note, precision values are 
lower when evaluating low-abundance circRNAs. We also show that the tools 
can be used complementarily to increase detection sensitivity. Finally, we 
offer recommendations for future circRNA detection and validation.

Circular RNAs (circRNAs) are a class of non-coding RNA molecules 
ubiquitous in humans and other eukaryotic species. For a long time, 
circRNAs were regarded as unimportant byproducts of splicing. How-
ever, since the advancement of RNA sequencing technologies and the 
development of circRNA detection bioinformatics pipelines there has 
been a significant increase in circRNA research, with a compound annual 
growth rate of scientific publications of 58% over the last 5 years (Fig. 1a)1.

Although an in vivo function for most circRNAs remains unknown 
and functional analyses are typically restricted to in vitro experiments, 
some circRNAs have been linked to specific diseases, including cancer. 

CircRNAs have also been reported to be more stable than linear tran-
scripts due to the absence of a free 5′ or 3′ end that can be recognized by 
exonucleases1. In line with this, a higher fraction of circRNA relative to 
linear RNA has been observed in a wide range of human biofluids, which 
makes them interesting biomarker candidates, with the potential to be 
used for minimally invasive tests for diagnosis or response monitoring2. 
Wang et al. reviewed 112 differentially expressed circRNAs in various 
biofluids from patients with different cancer types3. Furthermore, 15 
clinical trials incorporating circRNAs as disease biomarkers have been 
initiated (ClinicalTrials.gov, accessed on 20 October 2022).
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In general, high-throughput or exploratory circRNA detection is 
performed using bioinformatics approaches that analyze total RNA 
sequencing data. For this, the RNA sequencing reads are first mapped 
against a reference genome. The unmapped reads are subsequently 
used to identify BSJ-spanning reads that map divergently (in reverse 
order) on the linear genome (Fig. 1d).

Over the last decade, numerous computational circRNA detec-
tion tools have been developed and tested. Whereas multiple sets of 
circRNA detection tools using a bioinformatics approach have been 
compared (often when a novel tool is published)9–16, a systematic and 
comprehensive evaluation of many circRNA detection tools using an 
orthogonal validation method is still missing. In our benchmarking 
study the aim was to evaluate all currently available circRNA detec-
tion tools with an orthogonal approach using RT–qPCR, RNase R and 
amplicon sequencing (Fig. 2a). Our study highlights that although 
the precision of the tools is generally excellent, their sensitivities are 
highly variable.

Results
CircRNA detection tools predict a wide variety of circRNAs
CircRNA detection tools differ in detection strategies and filtering.  
For this study, 16 different circRNA detection tools were assessed: 
CIRCexplorer3 (ref. 17), CirComPara2 (ref. 11), circRNA_finder18, 

Eukaryotic circRNAs are formed through a process called 
back-splicing, in which the 5′ end of an RNA molecule forms a covalent 
bond with its own 3′ end, forming a circular molecule with a character-
istic back-spliced junction (BSJ) sequence (Fig. 1b)1. CircRNAs consist 
of one or multiple exons and, analogous to linear RNA, they also have 
alternative splicing, in which circRNAs with the same BSJ sequence may 
have a different exon (and/or intron) composition1.

In a targeted manner, circRNAs can be quantified with reverse 
transcription–quantitative polymerase chain reaction (RT–qPCR) 
using BSJ-spanning primer pairs to amplify the region flanking the 
BSJ (Fig. 1c). These primer pairs are divergent (facing away from each 
other) when hybridizing to the linear host transcripts and can therefore 
amplify only the circRNA4. However, false positives resulting from 
alignment ambiguity, repeat sequences, trans-splicing or reverse 
transcription template-switching artifacts have been described5,6. In 
all of these cases, a linear RNA molecule is formed with the same exon 
orientation and, therefore, the same sequence as the circRNA BSJ. 
To prevent false-positive circRNA identification, linear RNA is often 
digested with the exonuclease ribonuclease R (RNase R) followed by 
RT–qPCR. RNase R typically degrades linear RNA, whereas circRNAs 
are generally not affected. Of note, it has been suggested that long 
circRNAs may be somewhat sensitive to RNase R degradation, and vari-
ous challenges in the validation of circRNAs have been recognized7,8.
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Fig. 1 | CircRNA scientific relevance, structure and detection. a, Over the last 
decade, circRNA research has increased rapidly, as illustrated by the proportional 
growth of publications mentioning circRNA in Europe PubMed Central.  
b, CircRNAs are formed through back-splicing, which results in a circular 
molecule with a back-spliced junction (BSJ). Black boxes highlight the BSJ in the 
circRNA isoforms. c, CircRNAs can be detected with RT–qPCR using a BSJ-specific 
primer pair. The primer pair can bind only in a divergent manner (facing away 

from each other) to linear RNA, where no amplification will be possible, yet binds 
the circRNA in a convergent manner (facing towards each other), amplifying 
the BSJ sequence. d, Large-scale circRNA detection is typically performed using 
total RNA sequencing datasets and specialized computational tools. These tools 
identify BSJ-spanning reads, which map divergently (in reverse order) on the 
linear reference genome.
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circseq_cup19, CircSplice20, circtools21, CIRI2 (ref. 22), CIRIquant23, 
ecircscreen (unpublished tool), find_circ24, KNIFE15, NCLscan25, 
NCLcomparator26, PFv2 (ref. 27), Sailfish-cir28 and segemehl29 (Table 1  
and Supplementary Table 1). CircRNA detection tools differ in their 

circRNA detection approach (including strand assignment), reli-
ance on linear annotation, and filtering methods. CircRNAs can be 
detected from RNA sequencing data using the pseudo-reference-based 
approach (also called the candidate-based approach) or the 
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Fig. 2 | CircRNA detection tools predict a wide variety of circRNAs. a, This 
study consists of a circRNA detection phase and a circRNA validation phase. For 
the former, 16 circRNA detection tools were used to predict circRNAs in three 
deeply sequenced cancer cell lines. For the latter, a set of circRNAs was selected 
per tool and validated using three orthogonal methods, generating tool-specific 
precision values for each method. This was also used to compute compound 
precision and both types of sensitivity values for each circRNA detection tool.  
b, The number of reported circRNAs differs greatly between tools (shown for HLF 
cells; similar results for the other cell lines are shown in Supplementary Fig. 1). 
The tools are ordered according to the total number of predicted circRNAs. The 
vast majority of circRNAs are predicted with a BSJ count below 5 (in blue). Two 
tools, circRNA_finder, and segemehl, filtered their results to report only circRNAs 
with a BSJ count of at least 5 (in orange). †Tool filtered the output based on BSJ 

count. c, The majority of circRNAs (49.9%) are detected by only one tool. Circseq_
cup reports the largest set of unique circRNAs (shown for HLF cells; similar 
results for the other cell lines are shown in Supplementary Fig. 4). A small set of  
55 circRNAs is detected by all tools (column n_db in Supplementary Table 2).  
d, CircRNA splice sites differ between circRNA detection tools. Most commonly, 
the canonical AGNGT pattern is observed, with AG being the splice acceptor, N 
the circRNA, and GT the splice donor. ‡Circseq_cup, CirComPara2, Sailfish-cir 
and segemehl do not report strand information. To be able to retrieve a splicing 
sequence for the circRNAs from these tools, it was assumed that the circRNA 
originated from the positive strand. This led to the ACNCT pattern (reverse 
complement of AGNGT), most probably from circRNAs that were assigned to 
the positive strand incorrectly. Last, there are some tools that also report a 
substantial number of circRNA BSJ sequences with a GGNGG splicing pattern.
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fragmented-based approach (also called the segmented read-based 
approach)12,14. The former approach uses a reference list of potential 
BSJ sequences, often based on all possible combinations of known 
annotated exons in a gene. This approach is therefore limited to spe-
cies with annotated genomes and to previously annotated genes and 
will detect only circRNAs that use the same splicing sites as the linear 
RNAs. The latter approach splits unmapped sequencing reads into 
shorter sequences and remaps these against the reference genome. 
Last, integrative tools, such as CirComPara2 and ecircscreen, combine 
the results of multiple tools.

The number of detected circRNAs differs greatly between tools. A 
total of 315,312 unique circRNA predictions (corresponding to 1,137,099 
unique circRNA–strand–tool–sample tuples) were detected using 16 
different tools based on deeply sequenced total RNA from three human 
cancer cell lines (Supplementary Table 2, because of large file size, avail-
able only at https://github.com/OncoRNALab/circRNA_benchmarking). 
The circRNA detection tools were run by their developers (details in 
Methods and Supplementary Notes). There is a striking almost 40-fold 
difference between the tool with the highest number of predicted 

circRNAs (circseq_cup with 58,032 circRNAs) and the tool with the 
lowest number of predicted circRNAs (segemehl with 1,372 circRNAs) 
for one of the cell lines (Fig. 2b shows results for HLF (human lung 
fibroblast) cells; similar results for the other cell lines are shown in 
Supplementary Fig. 1).

Most circRNAs are characterized by low BSJ counts. CircRNA 
abundance is reflected by the BSJ count, which is the number of reads 
uniquely assigned to a given circRNA. The majority of circRNAs (86.6%) 
that are detected have a BSJ count below 5 (Fig. 2b), with only 46.1% of 
the detected circRNAs having a BSJ count of at least 2 (detailed distribu-
tion in Supplementary Fig. 2). To increase confidence, circRNA_finder 
and segemehl filtered their results to report only circRNAs with a BSJ 
count of at least 5, and CirComPara2 and KNIFE filtered for circRNAs 
with a BSJ count of at least 2. Circtools filtered circRNAs with a BSJ count 
of at least 2 in at least two samples. Of note, Sailfish-cir does not report 
raw BSJ counts, but transcripts per million (TPM) instead. The similar-
ity of circRNA BSJ counts between tool pairs is reasonable, according 
to regression analysis (linear models with median r2 = 0.86, median 
slope = 0.70, all P < 0.001, Supplementary Fig. 3).

Table 1 | CircRNA detection tools with their circRNA detection approach, strand assignment approach, reliance on linear 
annotation and filtering approach

Tool Approach circRNAs 
detected in…

Strand assignmenta Splicing BSJ count 
filterb

Minimum 
circRNA 
length (in 
nucleotides) b

Maximum 
circRNA 
length (in 
nucleotides)b

CIRCexplorer3 Segmented read-based Entire genome Based on linear annotation AGNGT None None None

CirComPara2 Integrativec Entire genome No strand reported AGNGT, ACNCT ≥2 299 2,304,996

circRNA_finder Segmented read-based Entire genome Based on mapping to 
genome

AGNGT ≥5 200 100,000

circseq_cup Based on segemehl, 
with full-length circRNA 
assembly

Entire genome No strand reported Non-canonical None None 5,000

CircSplice Segmented read-based Known splice 
sites

Based on linear annotation AGNGT, ACNCT None 78 None

circtools Segmented read-based Entire genome Based on mapping to 
genome

AGNGT ≥2 in ≥2 
samples

31 1,000,000

CIRI2 Segmented read-based Entire genome Based on GT–AG splice 
sites

AGNGT None 135 200,000

CIRIquant Based on CIRI2, with 
improved quantification

Entire genome Based on GT–AG splice 
sites

AGNGT None 135 200,000

ecircscreen Integrativec Entire genome Based on consensus from 
tools

AGNGT None None None

find_circ Segmented read-based Entire genomed Based on mapping to 
genomed

AGNGT None None 100,000

KNIFE Candidate-based Entire genome Based on linear annotation Non-canonical ≥2 None 1,000,000

NCLscan Candidate-based Known splice 
sites

Based on linear annotation Non-canonical None 100 None

NCLcomparator Filtered results of NCLscan Known splice 
sites

Based on linear annotation Non-canonical None 100 None

PFv2 Segmented read-based Entire genome Based on mapping to 
genome

AGNGT, ACNCT None 50 1,000,000

Sailfish-cir Based on CIRI2 v2.0.6 Entire genome No strand reported AGNGT, ACNCT No BSJ 
counts 
reported

135 200,000

segemehl Segmented read-based Entire genome No strand reported Non-canonical ≥5 None 200,000
aSome tools did not report strand information for this study, but the (updated) circRNA tool might report circRNA strand information. bThe BSJ count and the minimum and maximum circRNA 
length filters are the filters used for this specific study. The user can choose these parameters freely. Of note, the minimum and maximum length filters are based on the estimated circRNA 
length with introns, calculated by subtracting the start position from the end position of the BSJ. cIntegrative tools combine the results of multiple circRNA detection tools. This includes 
CirComPara2 (combining CIRCexplorer2 (v2.3.8), Segemehl (v0.3.4), CIRI2 (v2.0.6), DCC (v0.4.8) and find_circ (v1.2), and then filtering all circRNAs detected by at least two methods) and 
ecircscreen (combining CIRI2 (v2.0.6), circRNA_finder (v1.2), PFv2 (v2.0.0), find_circ (v1.2) and CIRCexplorer (v1.1.10), and then filtering all circRNA detected by at least three methods). dInferred 
based on publication and available code.
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CircRNA detection tools predict different sets of circRNAs. Half of 
all circRNAs in this study (49.9%) are reported only by one tool, which 
is largely due to circseq_cup’s high number of uniquely predicted  
circRNAs (Fig. 2c for HLF cells, similar results for the other cell lines are 
shown in Supplementary Fig. 4). The overlap of circRNA predictions 
among different tools is visualized in a heatmap for each cell line in 
Supplementary Fig. 5. Of 16 circRNA detection tools, eight exclusively 
report circRNAs flanked by canonical splice sites (with an AGNGT 
pattern, where AG is the splice acceptor, N represents the circRNA 
sequence and GT is the splice donor) (Fig. 2d). CirComPara2, circseq_
cup, Sailfish-cir and segemehl do not report circRNA strand orientation, 
which explains most of the ACNCT patterns (reverse complement of 
AGNGT) given that all of their predicted circRNAs were automatically 
assigned to the positive strand to retrieve the surrounding splicing 
sequence. Two-thirds of all predicted circRNAs in this study (68.5%) are 
novel compared with a set of previously reported circRNAs extracted 
from 13 published circRNA databases (Circ2Disease, circad, CircAtlas, 
circbank, circBase, CIRCpediav2, CircR2disease, CircRiC, circRNADb, 
CSCD, exoRBase, MiOncoCirc and TSCD) (Supplementary Fig. 6)30. Of 
note, approximately half of these novel circRNA candidates originate 
solely from circseq_cup. Looking at the tools individually, circseq_cup, 
KNIFE, NCLscan and NCLcomparator report a higher number of novel 
circRNAs (87.8%, 53.9%, 53.4%, 53.3%, respectively) compared with the 
other tools (median, 19.7%; interquartile range (IQR): 4.9–34.8%). Tools 
were further compared based on the predicted circRNA length, strand 
information, correspondence to linear annotation and predicted exon 
composition (Supplementary Data 1–4 and Supplementary Figs. 7–10). 
No notable differences were observed between tools, except for CIRI2 
and PFv2, which have a higher number of circRNAs for which no canoni-
cal linear annotation match was found, compared with the other cir-
cRNA detection tools (that is, the BSJ position of the circRNA did not 
match any known intron–exon splicing position based on the canonical 
transcripts from Ensembl GRCh38.103). Across all tools, 53.7% of circR-
NAs uniquely match one canonical linear transcript, 10.3% match more 
than one canonical transcript, and 35.9% do not match any canonical 
transcript. CircRNAs were found for 17,461 different canonical human 
transcripts, demonstrating the pervasive nature of back-splicing (28.9% 
of canonical transcripts from Ensembl GRCh38.103). Of note, this is an 
underestimation, given that for 46.3% of circRNAs no (unique) annota-
tion match could be found.

CircRNA validation with empirical methods
CircRNA primer design inherently introduces a selection bias. 
Based on previous experiments (Supplementary Data 5 and Sup-
plementary Fig. 11), for each tool we aimed to select 80 random 
high-abundance circRNAs with a BSJ count of at least 5 and 20 random 
low-abundance circRNAs with a BSJ count below 5. Importantly, the 
precision values for both abundance groups (described in the follow-
ing paragraphs) cannot be directly compared due to differences in 

the sample size. Of note, circRNA primer design inherently introduces  
a bias caused by the discarding of primer pairs (and therefore cir-
cRNAs) with predicted off-target amplification (Supplementary 
Data 6 and Supplementary Fig. 12). A selection of 1,560 circRNAs 
was obtained (Supplementary Table 3, BSJ count distribution in Sup-
plementary Fig. 13). Given that some circRNAs were selected more 
than once (by chance, for different tools or in different cell lines), 
the total number of unique circRNA–sample pairs was 1,516, from 
here on termed ‘selected circRNAs’ (detailed description in Supple-
mentary Fig. 14). Furthermore, a second bias is introduced within the  
group of low-abundant circRNAs, given that three tools (CirComPara2,  
circtools and KNIFE) filter circRNAs with a BSJ count of at least 2,  
whereas all other tools in this category also allow circRNAs with a 
BSJ count of 1.

High BSJ detection precision using RT–qPCR validation. Of the 1,516 
selected circRNAs, 1,479 (97.6%) could be validated with RT–qPCR, 
that is, the primer pair flanking the BSJ site resulted in a detectable 
amplicon. For the low-abundance circRNAs there is some variation in 
the tool-specific precision values (median, 95.0%; range, 80.0–100%), 
which is expected. High-abundance circRNAs have high RT–qPCR 
precision for most tools (median, 98.8%; range 90.0–100%) (Fig. 3a; 
the cumulative plot of the RT–qPCR precision as a function of the 
BSJ count is shown in Supplementary Fig. 15). It is important to note 
that RT–qPCR-based validation is the net result of a successful primer 
pair and the actual presence of a sufficiently abundant circRNA in the 
amount of RNA tested.

RNase R treatment degrades 1 in 16 predicted circRNAs. RNase  
R was used as a second, more stringent validation approach. RNase 
R selectively degrades linear transcripts, ensuring that the RT–qPCR 
primers amplify a circular molecule. For 112 out of 1,516 selected  
circRNAs (7.4%), RNase R treatment could not be evaluated because 
their abundance in the untreated sample was too low, leaving no room 
to confirm RNase R degradation in the event of a false-positive cir-
cRNA (hence labeled as NAs). In the remaining set of 1,404 predicted 
circRNAs, 1,319 circRNAs (93.9%) could be successfully validated using 
RT–qPCR on RNase R-treated RNA. For most tools, high RNase R preci-
sion was observed for high-abundance circRNAs (median, 96.3%; range, 
74.0–100%). PFv2 has the lowest precision (74.0%). For low-abundance 
circRNAs, lower precision was observed (median, 86.7%; range, 50.0–
100%) (Fig. 3a; the cumulative plot of the RNase R precision as a func-
tion of the BSJ count is shown in Supplementary Fig. 15). Of note, the 
number of circRNAs per tool in this bin is lower than the original 20 that 
were selected, given that more circRNAs were excluded due to abun-
dancy being too low (resulting in only 10–18 circRNAs per tool, with a 
median of 14 circRNAs). A comparison with matched RNase R-treated 
and -untreated sequencing data is given in Supplementary Data 7 and 
shows that the RNase R precision calculated from sequencing results 

Fig. 3 | The precision of circRNA detection tools is generally high and 
similar, whereas tools largely differ with respect to the number of predicted 
circRNAs. a–c, The plots are separated based on circRNA BSJ count below 5 
(low-abundance, in blue, 20 circRNAs selected per tool) or a BSJ count of at 
least 5 (high-abundance, in orange, 80 circRNAs selected per tool). Sailfish-cir 
reports TPM (transcripts per million) instead of BSJ count, and is therefore shown 
separately. Given that circRNA_finder and segemehl do not report any circRNAs 
with a BSJ count < 5, these tools are not included in the blue bar plots. a, CircRNAs 
were validated using three different techniques: RT–qPCR detection, resistance 
to degradation by RNase R, and amplicon sequencing (seq). Low-abundance 
circRNAs are in general more difficult to validate. Of note, the precision for 
low-abundance circRNAs is based on a limited set of circRNAs. High-abundance 
circRNAs have good precision for most tools and most validation methods. 
The error bars represent the 95% confidence intervals (CI). †A set of circRNAs 
was excluded because their abundance was too low to enable assessment of 

their resistance to RNase R, resulting in a variable number of circRNAs per 
tool instead of 20 or 80 for low-abundance and high-abundance circRNAs, 
respectively (range, 10–18 or 71–80 circRNAs per tool, respectively, details 
in Supplementary Table 6). A random subset of circRNAs was included in the 
amplicon sequencing experiment, resulting in a variable number of circRNAs per 
tool for amplicon sequencing validation as well (range, 11–20 or 54–74 circRNAs 
per tool, respectively, details in Supplementary Table 6). b, The vast majority 
of circRNAs produce the same results based on the three different validation 
methods. However, some circRNAs have conflicting results. For example, there 
are 13 circRNAs that are detectable by RT–qPCR but also are degraded upon 
RNase R (RR) treatment and for which the primers seem to amplify the wrong 
product. c, The compound precision is used to calculate the theoretical number 
of true-positive circRNAs by multiplying it with the original number of circRNAs 
detected by that tool (that is, the extrapolated sensitivity) (shown for HLF; similar 
results for the other cell lines are shown in Supplementary Fig. 26).

http://www.nature.com/naturemethods


Nature Methods | Volume 20 | August 2023 | 1159–1169 1164

Analysis https://doi.org/10.1038/s41592-023-01944-6

is mostly high and similar between tools, with PFv2 having the lowest 
precision (Supplementary Figs. 16–19 and Supplementary Tables 4 
and 5, because of large file size, available only at https://github.com/
OncoRNALab/circRNA_benchmarking).

Amplicon sequencing is the most stringent validation method. 
The RT–qPCR amplicons of the untreated RNA were sequenced for 
further validation of the circRNAs. A random subset of circRNAs (1,179 
of 1,516, 77.8%) was included in the amplicon sequencing experiment, 
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resulting in a variable number of circRNAs per tool instead of 20 or 80 
for low-abundance and high-abundance circRNAs, respectively (range, 
11–20 or 54–74 circRNAs per tool, respectively). For this subset of 1,179 
circRNAs, 1,014 circRNAs (86.0%) could be readily validated with ampli-
con sequencing, that is, the majority of reads aligned to the expected 
BSJ sequence. Most tools have similar amplicon sequencing precision 
for high-abundance circRNAs (median, 95.5%; range, 30.0–100%), with 
PFv2 having a very low (30.0%) amplicon sequencing precision. Of note, 
given that PFv2 was developed to retain repeat sequences, it is expected 
to result in more false positives. The most obvious are caused by linear 
read-through between exons in neighboring tandemly repeated gene 
clusters and interspersed repeats, and these tend to be abundant. For 
low-abundance circRNAs, performance is more diverse, with gen-
erally lower amplicon sequencing precision (median, 73.3%; range, 

17.6–94.1%) (Fig. 3a; the cumulative plot of the amplicon sequencing 
on-target amplification rate and the cumulative plot of the amplicon 
sequencing precision as a function of the BSJ count are shown in Sup-
plementary Figs. 20 and 15, respectively).

Different validation methods should be used in concert. Although 
the three validation strategies were used independently, it is interesting 
to evaluate to what extent they support each other (Fig. 3b and Sup-
plementary Figs. 21 and 22). Considering 1,103 circRNAs for which all 
three validation results are available, 957 circRNAs (86.8%) pass all vali-
dation methods, 128 circRNAs (11.6%) fail one or two of the validation 
methods, and 18 circRNAs (1.6%) fail all three validation methods. This 
shows that orthogonal validation with different empirical approaches 
is important to compensate for their inherent limitations. It is beyond 
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Fig. 4 | The intersection or union of two circRNA detection tools decreases 
the number of false positives, or increases the overall number of detected 
circRNAs, respectively. a, CircRNAs detected by multiple tools generally have 
higher precision. However, the often-used practice of using the intersection of 
two tools is not necessarily a guarantee of avoiding false-positive results. b, By 
considering the union of two circRNA detection tools, the number of circRNAs 
can be significantly increased while keeping the number of false-positive 
predictions low (shown for the HLF cell line; similar results for the other two 
cell lines are shown in Supplementary Fig. 37). For the y-axis, the percentage of 
detected circRNAs is calculated by dividing the number of circRNA detected 
by that tool combination by the total number of predicted circRNAs for that 

sample taking the union of all tools (13,087 circRNAs for the HLF sample). For 
this analysis, the compound precision of high-abundance circRNAs was used. 
Some circRNA detection tools are integrative and combine the results of multiple 
other tools. It is therefore assumed that an integrative tool would have large 
similarities with its underlying tools. However, a difference in tool version and 
filtering can still produce a different set of circRNAs. For example, CirComPara2 
is an integrative tool that combines CIRCexplorer2, CIRI2, DCC and find_circ, but 
nevertheless, the combination of CirComPara2 and CIRCexplorer3 still produces 
a significant increase in detected circRNAs (corresponding to 10% of all circRNA 
predictions for that cell line).
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the scope of this study to investigate why there are some discrepan-
cies among the validation results (some hypotheses are considered in 
the Discussion). First, they are rare (for most circRNAs, the different 
methods completely agree); and second, the same methods are used to 
compare the tools, whereby no tool should be favored over the other.

The three orthogonal validation methods were combined to label 
each circRNA as a true or false positive and the compound precision was 
calculated for each tool. Similar to the separate precision values, the 
compound precision is high and similar for most tools when looking 
at high-abundance circRNAs (median, 93.1%; range, 27.1–98.3%; IQR: 
90.5–95.3%), and lower and more variable for low-abundance circRNAs 
(median, 63.6%; range, 5.9–88.2%; IQR: 53.8–76.5%) (Supplementary 
Figs. 15 and 23).

CircRNA detection tools differ greatly in sensitivity. Tool sensitiv-
ity was evaluated using two different methods. In the first method, 
sensitivity was calculated based on the total number of true-positive 
circRNAs (n = 957) (Supplementary Figs. 24 and 25). Of note, this sen-
sitivity metric should be used with caution because it is based on a 
biased set of circRNAs collected from the 100 circRNAs selected per 
tool, which overlap and are not a representative random sample of all 
circRNAs (see Methods). In the second method, the theoretical number 
of true-positive circRNAs for each tool was computed by multiplying 
the total number of detected circRNAs by the compound precision (that 
is, the extrapolated sensitivity) (Fig. 3c for HLF cells; similar results 
for the other cell lines are shown in Supplementary Fig. 26). There is a 
significant positive correlation between the sensitivity values for the 
two methods (Spearman rank correlation of 0.84 with P < 0.001, S = 58, 
for low-abundance circRNAs, and a Spearman rank correlation of 0.80 
with P < 0.001, S = 113, for high-abundance circRNAs). Both methods 
show great variability in tool sensitivity, with a median sensitivity of 
75.1% (range, 29.7–87.1%) for low-abundance circRNAs and 65.7% (range, 
18.7–87.4%) for high-abundance circRNAs. To visualize the relation-
ship between sensitivity and compound precision, a precision–recall 
(sensitivity) dot plot for all tools is shown in Supplementary Fig. 27.

All metrics described above ((compound) precisions and sensitiv-
ity) and the tool ranking for each metric are available in Supplementary 
Table 6. The user can easily filter and order the circRNA detection 
tools based on their preferences. Reproducibility evaluations were 
performed and are described in Supplementary Data 8–10 (Supple-
mentary Figs. 28–32).

Evaluation of precision as a function of circRNA annotation. To 
evaluate the precision as a function of circRNA annotation, we restrict 
the analyses to high-abundance circRNAs with information for all 
validation techniques. Furthermore, a strict validation definition was 
used, whereby all circRNAs failing for at least one technique were 
classified as unvalidated. CircRNAs previously described in data-
bases have a higher likelihood of being validated (χ2 = 181.0, d.f. = 1, 
P < 0.001, odds ratio (OR) = 13.1). Nevertheless, false-positive circRNAs 

according to our data are still present in multiple published databases 
(Supplementary Figs. 33–35). For example, the false-positive circRNA 
chr6: 47526627–47554766 (hg38, 0-based) is present in CircAtlas (as 
hsa-CD2AP_0048) and in exoRBase (as exo_circ_65199). A difference in 
circRNA validation was observed depending on the splicing pattern, 
with better validation of circRNAs surrounded by canonical splice 
sites (χ2 = 45.4, d.f. = 1, P < 0.001, OR = 5.0). Similarly, circRNAs that 
originate from a region with an annotated linear transcript have higher 
validation rates (χ2 = 185.8, d.f. = 1, P < 0.001, OR = 17.1). Surprisingly, 
single-exon circRNAs had significantly lower validation rates than 
multi-exon circRNAs (χ2 = 20.0, d.f. = 1, P < 0.001, OR = 3.8). Last, while 
tools with a candidate-based approach seem more precise than tools 
using the segmented read-based approach (χ2 = 9.4, d.f. = 1, P = 0.0022, 
OR = 2.6), we cannot be sure that these results are not confounded by 
other algorithmic differences.

Evaluation of sensitivity in circRNA annotation. There is a signifi-
cantly higher sensitivity for tools reporting circRNAs surrounded by 
canonical splice sites, resulting in a median difference in sensitivity of 
38.5% (two-sided Mann–Whitney U = 55, P = 0.0022, large effect size of 
0.78, 95% CI: 0.56–0.85, n1 = 11 (canonical), n2 = 5 (non-canonical), only 
high-abundance circRNAs). However, no link could be found between 
sensitivity and tool approach, use of linear annotation, strand annota-
tion method or BSJ count filtering.

Evaluation of tool combinations to improve performance
For the combination of two or more tools, both the intersection and the 
union have been proposed11 (Supplementary Tables 7 and 8). Although 
not evaluated here, the increased time and resource consumption 
should also be taken into account when considering the use of mul-
tiple tools. A list of the top-performing combinations is available in 
Supplementary Table 9 and can be used as a reference.

A circRNA predicted by two tools can be a false result. Figure 4a 
shows that circRNAs uniquely detected by a single tool generally have 
lower precision. In line with this, circRNAs detected by at least two tools 
have a higher chance of being validated (χ2 = 333.1, d.f. = 1, P < 0.001, 
OR = 53.8). By contrast, out of 1,380 unique circRNAs detected by at 
least two tools, 7 circRNAs (0.5%) failed all three validation methods 
and 137 (9.9%) failed at least one of the validation methods (Supple-
mentary Fig. 36), showing that the practice of using the intersection 
is not a guarantee to avoid false-positive results.

The union of tools increases the number of true circRNAs. To maxi-
mize detection sensitivity and maintain precision, we evaluated the 
union of pairs or triples of circRNA detection tools. Generating all pos-
sible combinations of the better tools with individual compound pre-
cision ≥ 90% for high-abundance circRNAs (n = 12 tools) consistently 
results in higher detection sensitivity while maintaining a high weighted 
precision. The median increase in the number of detected circRNAs. 

Table 2 | CircRNA research recommendations

circRNA detection 1.  An orthogonal validation method must be used to validate a predicted circRNA; qPCR validation on its own is not sufficient, at least 
qPCR + RNase R treatment or preferably qPCR + amplicon sequencing should be used.

2. Filtering based on a minimum BSJ count is recommended to increase the likelihood of successful empirical validation.

circRNA validation 3. For a precision-focused approach, the intersection of two tools with a high individual precision (for example, ≥90%) should be used.
4. For a sensitivity-focused approach, the union of two tools with a high individual precision (for example, ≥90%) should be used.
5.  The choice of tools to be combined may be informed based on the tools’ underlying principles (circRNA detection approach, reliance on 

linear annotation and canonical splicing, and filtering).

circRNA tool 
development

6. Tools should report the originating strand information, the BSJ count evidence, and the chromosomal start and end position of the BSJ.

circRNA tool 
validation

7. For evaluation of sensitivity, novel and updated tools are encouraged to use the empirically validated set of 957 true-positive circRNAs.
8. For evaluation of precision, a random set of 100 predicted circRNAs should be validated with empirical methods.
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for combinations of two or three tools, is 37.0% (IQR: 16.5–129.7%) and 
79.6% (IQR: 33.1–215.7%), respectively. In other words, when combining 
very precise tools, the number of false positives does not counteract the 
gain in additional true positives. A subset of tool combinations with an 
increase of at least 1,000 circRNAs is shown in Fig. 4b (shown for HLF 
cells; similar results for the other cell lines are shown in Supplementary 
Fig. 37; the combination of three tools is shown in Supplementary  
Fig. 38). One obvious consideration when selecting two different tools 
is their circRNA detection approach, their reliance on linear annotation 
and their filtering methods. For example, when combining two tools 
with a different detection approach (the pseudo-reference-based or 
fragmented-based approach), the median increase in the number of 
detected circRNAs is 61.1%, compared with 35.4% for two tools with 
the same detection approach (two-sided Mann–Whitney U = 58,554.5, 
P < 0.001, small effect size of 0.16, 95% CI: 0.08–0.23, n1 = 336, n2 = 294). 
Similarly, when combining two tools with the same splice site settings 
(both canonical or both non-canonical), the median increase in the 
number of detected circRNAs (32.6%) is significantly smaller than that 
for the combination of two tools with different splice site settings (one 
canonical and one non-canonical) (76.2%) (two-sided Mann–Whitney 
U = 65,356.5, P < 0.001, small effect size of 0.28, 95% CI: 0.21–0.35, 
n1 = 300, n2 = 330). A similar analysis for the combination of tools that 
rely or do not rely on linear annotation was not significant.

Discussion
Multimodal orthogonal validation of bioinformatics tools that predict 
circular RNAs from total RNA sequencing data is currently lacking. 
Hence, their precision and sensitivities are unknown and scientific 
data are confounded with false-positive and false-negative predictions. 
To accommodate this lacuna, we set up a large-scale international col-
laborative circRNA detection tool benchmarking study (Fig. 2a). First, a 
deeply sequenced total RNA sequencing dataset was processed by the 
developers of 16 different circRNA detection tools. Next, three empiri-
cal validation strategies were used to evaluate a random selection of 
1,560 circRNAs representing each tool: first, RT–qPCR to determine 
whether the candidate circRNA BSJ sequence was detectable; second, 
RNase R treatment to confirm that the detected RNA was most likely to 
be circular and not linear; and third, amplicon sequencing to confirm 
the circRNA BSJ sequence. Of note, both circRNA RT–qPCR and RNAse 
R validation protocols were extensively validated4,31.

The precision is similarly high among tools (Fig. 3a), especially 
when considering the subset of high-abundance circRNAs (with BSJ 
count ≥5). In contrast, the number of predicted circRNAs and the 
sensitivity varies greatly between tools, in line with previous studies 
based on simulated data11,13,14 (Supplementary Data 11 and Supplemen-
tary Figs. 39 and 40). The striking differences in sensitivity are in part 
dependent on the operator applying BSJ count filters.

The three validation methods each have their own strengths and 
biases, with conflicting results for several circRNAs (Fig. 3b, discussed 
in detail in Supplementary Discussion 1). In total, 957 (86.8%) circRNAs 
are validated by all three methods. However, 22 circRNAs are validated 
with qPCR and amplicon sequencing but are degraded by RNase R (with a 
decrease of concentration of at least 87.5%, that is, a difference of at least 
3 cycles). A possible explanation could be that some bona fide circRNAs 
are susceptible to RNase R degradation8 or that the primers amplify a 
mixture of circular and linear RNA. Another subset of 92 circRNAs pass 
RT–qPCR validation and RNase R validation but fail amplicon sequencing. 
These could be (repetitive) RNAs resistant to RNAse R due to a second-
ary structure, either internal or through base pairing with orthologs8. 
These examples underscore the importance of using different validation 
methods to compensate for their intrinsic limitations and to increase the 
validation status confidence (as previously suggested in ref. 8).

Although long-read sequencing has been implemented to study 
full-length circRNAs32–35, the bulk of currently available data is still 
short-read sequencing. Therefore, this benchmarking study evaluated 

circRNA detection tools for short-read sequencing data, which typi-
cally report circRNAs by their BSJ position (chr, start, end, strand). 
However, it remains unknown whether the detected BSJ corresponds 
to one circRNA, or multiple alternatively spliced circRNAs with differ-
ent exon and intron compositions. Hence, the prediction precision 
reported here might be influenced by more than one circRNA with 
the same BSJ. Given that this study is focused on circRNA detection in 
short-read sequencing data, the internal circRNA composition was not 
evaluated. Furthermore, no distinction can be made between circRNAs 
on the positive strand or negative strand using RT–qPCR and amplicon 
sequencing (9.4% of circRNAs were reported to originate from different 
strands according to different tools).

Based on a pilot study (Supplementary Data 5 and Supplemen-
tary Fig. 11), a cut-off was set at a BSJ count of 5, given that circRNAs 
under this cut-off approached the qPCR limit to reliably detect RNase 
R-based degradation of falsely predicted circRNAs. Although very deep 
sequencing of a large RNA input amount was performed, it is beyond 
the scope of this study to evaluate whether the BSJ count should be 
reconsidered with regard to the sequencing depth. However, given 
that the majority of predicted circRNAs have a BSJ count below 5, we 
decided to include at least a subset of these low-abundance circRNAs 
to calculate the corresponding prediction precision. It is no surprise 
that the precision for low-abundance circRNAs is significantly lower 
than that for high-abundance circRNAs (χ2 = 76.7, d.f. = 1, P < 0.001, 
OR = 3.8). This difference is likely to be due to the detection limits of the 
applied validation strategies in conjunction with the sampling bias of 
low-abundance analytes, and not due to inherently more false-positive 
predictions for circRNAs with a lower count. Of note, it can be presumed 
that weakly expressed circRNAs are less relevant for both functional 
studies and biomarker research.

Focusing on high-abundance circRNAs, interesting associations 
were found between circRNA annotation and validation rates. As such, 
circRNAs had higher validation rates when they were detected by mul-
tiple tools, when they were previously reported in a circRNA database, 
when they were surrounded by canonical splice sites, and when they 
originate from a region with an annotated linear transcript. CircRNA 
detection tools with a candidate-based approach are more precise than 
tools using the segmented read-based approach, which is in line with 
the higher validation likelihood of circRNAs originating from known 
linear genes and surrounded by canonical splice sites.

Based on our study, we compiled a list of recommendations for 
circRNA detection and validation, and for the future development of 
circRNA detection tools and their performance evaluation (Table 2).  
Ideally, publicly available (spike-in) reference material (consisting 
of known synthetic circRNAs) should be used to benchmark existing 
and novel circRNA detection tools. However, such reference material 
is currently not available. Given that the main goal of this study was 
to perform a neutral assessment of circRNA detection tool sensitivity 
and precision, the developers of the tools were asked to run the tools 
themselves. Therefore, execution time, memory usage and ease of use 
could not be compared and were not assessed here.

Furthermore, this study resulted in a circRNA resource contain-
ing > 315,000 circRNAs detected by different tools in three human 
cancer cell lines from different tissue origins and provides validation 
results for 1,500 circRNAs that can be used as a reference for the devel-
opment of new or improved circRNA detection tools. Finally, our study 
can also serve as an example framework for empirical validation of 
benchmarking results from other bioinformatics tools in the future.
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Methods
Study set-up
Given that this study involves the execution and evaluation of circRNA 
detection tools, the co-authors can be divided into two groups: an inde-
pendent group (with no circRNA detection tool of their own) that initiated 
and designed the study and performed all of the wet-lab work and data 
analysis (the validation co-author group), and a group of tool developer 
co-authors who detected circRNAs using their own circRNA detection tools 
according to their expertise (the circRNA prediction co-author group) 
(details in Author Contribution section). During the study, meetings and 
emails were used to share the results (initially in a blinded manner) and 
discuss the final manuscript with the circRNA prediction co-authors.

Cell culture
Three cancer cell lines of different cellular origin were randomly chosen 
as biological replicates. Ethics approval was obtained for this study 
(EC014-202, Ghent University Hospital) and the cell lines were pur-
chased from the JCRB ( Japanese Collection of Research Bioresources) 
Cell Bank (HLF and NCI-H23) or ECACC (European Collection of  
Authenticated Cell Cultures) (SW480). SW480 cells were cultured at 
37 °C, 0% CO2 in Leibovitz’s L-15 medium (31415-029, ThermoFisher). 
HLF cells and NCI-H23 cells were cultured at 37 °C, 5% CO2 in DMEM, low 
glucose, GlutaMAX Supplement, pyruvate (21885025, ThermoFisher) 
and RPMI 1640 Medium, HEPES (52400041, ThermoFisher), respec-
tively. Also, 10% FBS (F7524, Sigma) and 1% penicillin–streptomycin 
(10,000 U ml−1) (15140122, ThermoFisher) were added to all three media.

RNA isolation
RNA was isolated from the cells using the miRNeasy Mini kit (217004, 
Qiagen) according to the manufacturer’s instructions, including the 
optional on-column DNase treatment (79254, Qiagen). For each cell 
line, a sufficient number of cells was cultured to be able to collect 
a minimum of 330 µg RNA. The RNA concentration was measured 
spectrophotometrically using a NanoDrop instrument, and the RNA 
integrity was evaluated using the Fragment Analyzer system. For each 
cell line, the RNA was pooled and aliquoted (1,000 ng RNA in 100 µl 
nuclease-free water per aliquot) and stored at –80 °C, making a uniform 
RNA collection to use for all downstream experiments.

RNase R treatment, library preparation and sequencing
For each cell line, two aliquots of 1,000 ng input RNA (in 10 µl 
nuclease-free water) were used. First, ribosomal RNA was removed 
with the NEBNext rRNA Depletion Kit (E6350X, New England Biolabs), 
following the manufacturer’s instructions. Next, RNAse R treatment 
was performed according to our previously described protocol4. 
In summary, one aliquot of each cell line was treated with RNase R 
(RNR07250 (250 U), Lucigen), and one aliquot of each cell line was 
treated as a buffer control. This was followed by a clean-up step using 
Vivacon 500, 10,000 MWCO (molecular weight cut-off) Hydrosart 
columns (VN01H02, Sartorius). Subsequently, the NEBNext Ultra II 
Directional RNA Library Prep Kit for Illumina (E7760L, New England 
Biolabs) was used in combination with the NEBNext Multiplex Oligos 
for Illumina (E7600S, New England Biolabs) to index and prepare the 
samples for sequencing. The library preparation protocol was adjusted 
to obtain relatively long insert sizes (average size of 636 nucleotides 
measured using the Fragment Analyzer system): RNA fragmentation 
of 7.5 min; and a first-strand complementary DNA synthesis elonga-
tion step of 50 min instead of 15 min. The last bead clean-up step was 
performed twice to completely remove all indexes from the samples. 
Finally, the samples were pooled equimolarly and sequenced on a 
NovaSeq 6000 instrument using a NovaSeq 6000 S1 Reagent Kit v1.5 
(300 cycles) (20028317, Illumina), resulting in approximately 300 
million paired-end 150-nucleotide reads per sample. Raw FASTQ files 
are stored in the Sequence Read Archive (PRJNA789110: SRX13414572 
(untreated HLF), SRX13414573 (untreated NCI-H23), SRX13414574 

(untreated SW480), SRX13414575 (RNase R-treated HLF), SRX13414576 
(RNase R-treated NCI-H23), SRX13414577 (RNase R-treated SW480)).

CircRNA detection
In November 2020 a comprehensive list of all published circRNA detec-
tion tools was compiled, and all developers were invited to collaborate. 
Upon consent, they were asked to detect circRNAs using their own  
circRNA detection tool as appropriate for the data that were provided. 
The circRNA detection steps for each tool are detailed in the Sup-
plementary Notes. Often, the default parameters were used given 
that most of the methods included in our benchmarking underwent 
continuous development during the last several years and their param-
eters have been optimized for standard RNA sequencing data (as is the 
case in this study). We were unable to contact the authors of find_circ24 
and decided to run this tool ourselves, given that it is one of the most 
frequently cited and broadly used circRNA detection tools. Unfortu-
nately, other well-performing tools (according to refs. 10,14), such as 
MapSplice36, could not be included. More recent tools, such as Circall13 
and CYCLeR37, have been published after the validation experiments 
were performed, and are therefore not included.

After collecting all circRNA detection results, a uniform list of 
circRNAs defined by their BSJ position (chr, start, end, strand) and the 
BSJ count for each tool was compiled (Hg38, 0-based).

CircRNA selection and primer design
Guided by a pilot experiment assessing circRNA RT–qPCR detect-
ability depending on circRNA abundance and RNA input amount 
(Supplementary Data 5 and Supplementary Fig. 11), for each tool, 
80 high-abundance circRNAs (with a BSJ count of at least 5), and 20 
low-abundance circRNAs (with a BSJ count below 5) were selected (as 
two separate count bins). Primer pairs were designed using our primer 
design tool CIRCprimerXL31. All primer sequences are available in 
Supplementary Table 3. If no primer pair could be designed for a given 
circRNA, a substitution was randomly selected from the complete 
dataset, considering the BSJ count bin. In total, 1,560 circRNA–tool–cell 
line tuples were selected. Given that some circRNAs were selected more 
than once (for different tools) the total number of unique circRNA–cell 
line pairs is 1,516, and the number of unique circRNAs (not taking into 
account the strand) is 1,457 (Supplementary Fig. 14). Additionally, 
most of the selected circRNAs are detected by multiple tools (for which 
they were not selected). For the precision calculations, only the 20 
low-abundance and 80 high-abundance circRNAs selected for a specific 
tool were used to evaluate that tool to maintain an equal number of 
observations for each tool, even though more of its predicted circRNAs 
might have been validated. However, for the sensitivity calculations, 
the complete set of circRNAs had to be used (see below).

RNase R and RT–qPCR
The RNA aliquots derived from the three cell lines were used for the 
circRNA RT–qPCR validation. A total of 1,080 µl, 900 µl and 780 µl 
RNA (100 ng µl−1) was required to validate 579, 500 and 437 circRNAs 
in HLF, NCI-H23 and SW480 cells, respectively. RNase R treatment was 
performed according to our previously reported protocol4, adapted 
for this large-scale experiment. In summary, one RNA aliquot of a given 
cell line was treated with RNase R (RNR07250 (250 U), Lucigen) and 
another was treated as a buffer control, for a total of 92 RNase R-treated 
replicates and 92 buffer control replicates (2 × 36 for HLF, 2 × 30 for 
NCI-H23 and 2 × 26 for SW480 RNA). All volumes were doubled during 
the buffer and RNase R reaction (total reaction volume of 20 µl). This 
was followed by a clean-up step using Vivacon 500, 10,000 MWCO 
Hydrosart columns (VN01H02, Sartorius). Next, reverse transcrip-
tion was carried out on the 184 separate replicates using the iScript 
Advanced cDNA Synthesis Kit (172-5038, Bio-Rad), according to the 
manufacturer’s instructions. After reverse transcription, the cDNA was 
diluted 1:2 and an aliquot (2.5 µl) was further diluted 1:4 to evaluate the 
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success of the RNase R reaction for each individual replicate. For this, 
ACTB and a known circRNA (chr1: 117402185–117420649) previously 
described4 (primer sequences available in Supplementary Table 10) 
were measured with qPCR using 2.5 µl 2x SsoAdvanced Universal SYBR 
Green Supermix (172-5274, Bio-Rad), 0.5 µl forward and reverse primer 
(5 nM), and 2 µl cDNA per well, with qPCR duplicates. Once the RNase R 
treatment was successfully validated, all cDNA replicates were pooled 
per cell line and treatment condition. The cDNA was diluted 1:5 in 2× 
SsoAdvanced Universal SYBR Green Supermix (172-5274, Bio-Rad). All 
1,560 circRNA primer pairs were ordered from IDT in 96-well plates at 
a concentration of 100 µM in nuclease-free water. All primers were 
diluted 1:160 to obtain a 0.625 µM concentration. In each well of a qPCR 
plate, 2 µl diluted primers and 3 µl cDNA–master mix combination were 
added, resulting in an equivalent of 25 ng input RNA per qPCR reaction. 
Each assay (circRNA) was measured four times to include qPCR dupli-
cates and to measure the abundance in both an RNase R-untreated and 
-treated sample, resulting in a total of more than 6,000 qPCR reactions. 
A pipetting robot (EVO100, TECAN L) was used to dilute the primers and 
fill the qPCR plates. The qPCR reactions were run on a CFX384 instru-
ment (Bio-Rad). Cq (quantification cycle) calling was done using the 
Bio-Rad CFX Manager (v3.1), with the ’regression’ settings. The plates 
were stored at −20 °C prior to amplicon sequencing.

Amplicon sequencing
After RT–qPCR, ~80% of the circRNAs were randomly included for 
amplicon sequencing. To construct the sequencing library, the ampli-
cons were pooled by combining 2 µl of the PCR reaction from one of 
the untreated qPCR duplicates, per cell line. Next, the three samples 
were cleaned using Vivacon 500, 10,000 MWCO Hydrosart columns 
(VN01H02, Sartorius). The PCR product pools were analyzed using a 
TapeStation 4150 (Agilent) and the concentration was measured using 
a Qubit fluorometer (ThermoFisher). Next, the three pools were diluted 
in nuclease-free water to obtain 50 µl samples with a concentration of 
20 ng µl−1. Finally, the samples were prepared for sequencing using 
the NEBNext Ultra II DNA Library Prep Kit for Illumina (E7645S, New 
England Biolabs) and NEBNext Multiplex Oligos for Illumina (Dual Index  
Primers Set 1) (E7600S, New England Biolabs). To retain all amplicons, 
no size selection was performed after adapter ligation, and 1.0x AMPure 
XP beads (A63881, Beckman Coulter) in a 1:1 sample : beads ratio was 
used instead. After library preparation, the samples were pooled equi-
molarly. The pool was sequenced on a NextSeq 500 instrument using 
a Mid Output Kit v2.5 (150 cycles) (20024904, Illumina), resulting in 
approximately 25–30 million paired-end 75-nucleotide reads per library.

Data analysis
Data analysis was mostly done using R38 (v4.2.1) in RStudio39 (v2022.07.1). 
The following R packages were used: tidyverse (v1.3.2), conflicted 
(v1.1.0), ggrepel (v0.9.1), ggseqlogo (v0.1), europepmc (v0.4.1), gplots 
(v3.1.3), ggpubr (v0.4.0), quantreg (v5.94), rstatix (v0.7.0) and UpSetR 
(v1.4.0). For sequencing data analyses, including circRNA detection and 
amplicon sequencing analysis, the Ghent University high-performance 
cluster was used. For this, Python3 (v3.6.8) (ref. 40), Bowtie2 (v2.3.4.1) 
(ref. 41), fastahack (v1.0.0), SAMtools (v1.11) (ref. 42) and BEDTools 
(v2.30.0) (ref. 43) were used. The human reference transcriptome was 
downloaded as a GTF file from Ensembl44. All data analysis scripts are 
available at https://github.com/OncoRNALab/circRNA_benchmarking.

Amplicon sequencing data analysis
For the amplicon sequencing data analysis, first, a custom Python 
script matches the primer sequences with the first 16-mer of each read 
(forward and reversed) and generates a separate FASTQ file per primer 
pair, containing all reads starting with that primer sequence. The FASTQ 
reads are then clipped to remove the primer sequences. Next, all FASTQ 
files are mapped against the reference genome (Ensembl GRCh38.101) 
supplemented with the theoretical BSJ amplicon sequences using 

Bowtie2 with default settings. Last, the Bowtie2 BAM files are converted 
to counts using another custom Python script and the percentage 
on-target amplification was calculated for each primer pair.

Determination of orthogonal precision values and sensitivity
Several strategies to filter the data prior to precision and sensitivity 
calculations were explored. For RT–qPCR, a circRNA was considered 
validated when at least one of the untreated RNA samples had Cq above 
10. Multiple variations of this threshold and a potential upper Cq thresh-
old were evaluated. For RNase R validation, a subset of circRNAs with at 
least one untreated replicate with Cq below 32 was selected to ensure 
that the enzymatic degradation of a false-positive circRNA could be 
measured. A circRNA was considered validated upon RNase R treatment 
if the difference in Cq between the untreated and treated RNA sample 
was equal to or less than 3 cycles, based on a previous study4. Given that 
there were two qPCR replicates available for each (un)treated sample, 
the best-case scenario was used to calculate the difference in Cq by 
subtracting the maximum untreated Cq replicate from the minimum 
treated Cq replicate. A circRNA with both untreated replicates having 
Cq above 32 was labeled as NA. For amplicon sequencing, a circRNA was 
considered validated if the primer pair was found in at least 1,000 reads 
and if at least 50% of these reads matched the expected amplicon upon 
mapping with Bowtie2. For a random subset of circRNAs, unintention-
ally no amplicon sequencing was performed; these were labeled as NA.  
A detailed description of the choice of performance metrics is available in 
Supplementary Data 12 and 13. To calculate precision per tool, BSJ count 
bin and validation method, the number of circRNAs that passed the vali-
dation was divided by the total number of circRNAs that were not NA for 
that validation method. We also determined the compound precision 
by considering qPCR, RNase R treatment and amplicon sequencing. For 
this, each circRNA was labeled as a true positive (that is, validated by all 
three methods), as a false positive (that is, not validated by at least one 
of the methods), or as NA (that is, not included in the amplicon sequenc-
ing run). Based on this summarizing label, compound precision was 
computed for each tool and BSJ count bin. The number of theoretically 
true-positive circRNAs was calculated by multiplying the total number 
of circRNAs predicted by that tool for that sample with the compound 
precision value (that is, the extrapolated sensitivity). The sensitivity was 
also calculated as the percentage of circRNAs that each tool detected 
from the validated set of true-positive circRNAs (that is, the circRNAs 
labeled as true positives over all three methods). This metric should be 
used with caution because it is based on a biased selection of circRNAs 
due to the overlap between tools (Supplementary Data 12). To calcu-
late the sensitivity per BSJ count group, the median BSJ count of each 
circRNA was used (given that most circRNAs are detected by multiple 
tools and therefore have multiple BSJ count values).

Annotation of circRNAs
To obtain the circRNA splice site information, the BSJ-flanking nucle-
otides were extracted from the reference genome using fastahack 
(Ensembl GRCh38.104). To compare BSJ positions with known linear 
annotation, BEDtools intersect was used with a list of canonical tran-
scripts from Ensembl with their positions based on the corresponding 
Ensembl GTF file (Ensembl GRCh38.103). When a circRNA mapped to 
multiple isoforms, the annotation was labeled as ‘ambiguous’ and the 
circRNA was not taken into account for further annotation-based calcu-
lations and figures. The annotation was used to compute the length of 
each circRNA excluding introns, and the number of exons per circRNA. 
CircRNAs smaller than their host gene exon were labeled ‘single-exon’ 
circRNAs. For the length of each circRNA including introns, the BSJ start 
position was simply subtracted from the BSJ end position. Furthermore, 
for each circRNA, annotation was added to indicate whether the BSJ 
start and end positions match known exon boundaries. When compar-
ing predicted circRNAs to circRNAs previously described in databases, 
strand information was discarded.
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Combination of tools
To compare the circRNA tools, the union and intersection of all cir-
cRNAs predicted by each tool pair and triple were calculated. The 
weighted precision was calculated for each combination of tools as fol-
lows: ((compound_precision_1 × total_n_1) + (compound_precision_2 ×  
total_n_2))/(total_n_1 + total_n_2). For this, strand information was 
discarded, given that 4 out of 16 tools did not report circRNA strands 
and would therefore have been excluded. These calculations were  
performed for each cell line separately. To determine the correspond-
ence between tools, the Jaccard distance was calculated and heat-
map clusters were generated. The tools were compared based on the 
presence or absence of a circRNA. Also, for the calculation of how 
many tools detected a given circRNA, circRNA strand information 
was discarded.

Statistical analyses
To evaluate the effect of circRNA characteristics on circRNA validation, 
the chi-squared test was used (chisq.test) function in R). For every 
test, the set of used circRNAs was slightly different depending on the 
availability of annotation information. All of the tests had all expected 
values in the contingency table above 5, therefore no correction for 
small sample size was necessary. Seven different characteristics were 
tested, and no multiple testing correction was performed. To evaluate 
the effect of circRNA detection tool methods on sensitivity and to evalu-
ate the effect of the combination of tools with different approaches, 
the two-sided Mann–Whitney U-test was used (rstatix::wilcox_test) 
function in R). For correlation analysis between the sensitivity and 
the extrapolated sensitivity, the Spearman rank correlation was used 
(cor.test(method = ‘spearman’) function in R). For correlation analysis 
between circRNA BSJ counts from different tools, or between circRNA 
BSJ counts and Cq values, or between Cq values in different cell lines, 
linear models were used (lm) function in R). To evaluate the contribu-
tion of the cell lines (in contrast to the tools) to precision and sensitivity, 
an ANOVA test was used (aov) function in R).

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
We anticipate that this study will serve as a future resource for the 
circRNA community. The information on all predicted circRNAs 
(n = 315,312), including the large extensively validated circRNA set 
(n = 1,516), along with the validation results are available in the GitHub 
repository (https://github.com/OncoRNALab/circRNA_benchmarking) 
and as Supplementary Tables. The set of circRNAs previously described 
in databases (Circ2Disease, circad, CircAtlas, circbank, circBase,  
CIRCpediav2, CircR2disease, CircRiC, circRNADb, CSCD, exoRBase, 
MiOncoCirc and TSCD) is also included in the GitHub repository. All 
databases were accessed in the context of a previous study30. Raw 
FASTQ files are stored in the Sequence Read Archive (PRJNA789110: 
SRX13414572 (untreated HLF), SRX13414573 (untreated NCI-H23), 
SRX13414574 (untreated SW480), SRX13414575 (RNase R-treated 
HLF), SRX13414576 (RNase R-treated NCI-H23), SRX13414577 (RNase 
R-treated SW480)). Source data are provided with this paper.

Code availability
All of the scripts used to compute the metrics described in the study and 
generate the figures are available at https://github.com/OncoRNALab/
circRNA_benchmarking.
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