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Exploring the cellular landscape of circular RNAs
using full-length single-cell RNA sequencing
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Previous studies have demonstrated the highly specific expression of circular RNAs (cir-

cRNAs) in different tissues and organisms, but the cellular architecture of circRNA has never

been fully characterized. Here, we present a collection of 171 full-length single-cell RNA-seq

datasets to explore the cellular landscape of circRNAs in human and mouse tissues. Through

large-scale integrative analysis, we identify a total of 139,643 human and 214,747 mouse

circRNAs in these scRNA-seq libraries. We validate the detected circRNAs with the inte-

gration of 11 bulk RNA-seq based resources, where 216,602 high-confidence circRNAs are

uniquely detected in the single-cell cohort. We reveal the cell-type-specific expression pat-

tern of circRNAs in brain samples, developing embryos, and breast tumors. We identify the

uniquely expressed circRNAs in different cell types and validate their performance in tumor-

infiltrating immune cell composition deconvolution. This study expands our knowledge of

circRNA expression to the single-cell level and provides a useful resource for exploring

circRNAs at this unprecedented resolution.
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C ircular RNAs are a large class of RNAs that widely exist in
eukaryotic cells. Recent studies have demonstrated the
emerging roles of circRNAs in regulating biological pro-

cesses through promoting protein functions1–3 or encoding
peptides4. So far millions of circRNAs have been identified across
various species, and several comprehensive databases have been
developed to reveal the circRNA expression landscape in different
tissues and organisms5–7. Generally, most circRNAs are expressed
at low levels, and exhibit high tissue- and species- specificity
compared to the cognate linear mRNAs8,9. Thus, most studies
using the traditional bulk RNA-seq method cannot fully char-
acterize the intrinsic heterogeneity between individual cells, and
the complexity of circRNAs at the single-cell level needs further
exploration.

The advent of single-cell RNA sequencing methods has
enabled the study of the transcriptome at single-cell resolution.
However, only limited attempts have been made to characterize
circRNA expression patterns at single-cell resolution10,11, which
focused on studying the maternal effect of circRNAs in 69 mouse
embryo samples or the heterogeneity of circRNAs among
45 single HEK293T cells. Considering the high species- and
tissue-specificity of circRNAs, the cellular architecture of cir-
cRNAs in different tissues and carcinoma samples remain
unexamined. Specifically, a recent study suggested that bulk
RNA-seq based data were strongly affected by the cell composi-
tion in different samples, which may lead to a misleading inter-
pretation of observed results12. Although most single-cell RNA-
seq methods implement poly(A) selection where circRNAs
should be theoretically depleted, recent studies have also
demonstrated that circRNAs can be still widely detected, although
with lower efficiency, in these poly(A) selected libraries, which
elucidated the possibility of characterizing circRNAs using full-
length scRNA-seq datasets13–15. Thus, the investigation of cir-
cRNAs at the single-cell level has become an emerging problem in
circRNA studies.

Here, we employ a compendium of full-length single-cell RNA-
sequencing datasets composed of 172,137 high-confidence cells
from 171 public studies to generate a comprehensive map of
circRNAs in human and mouse single cells. Through large-scale
integration of these scRNA-seq datasets, we demonstrate the high
cell-type specificity of circRNAs in these two species at the single-
cell resolution. Particularly, we elucidate the neuron-specific
expression of circRNAs in brain samples and revealed the
dynamic transition between maternal and zygotic circRNA
expression during embryo development. We disclose the inter-
and intra-tumor heterogeneity of circRNAs in 20 breast cancer
patients, where circRNAs exhibit highly similar expression in the
primary and metastasis tumor from the same patient. Further-
more, we unveil the cell type-specific circRNAs expression in
both species and validate the applicability of circRNAs as pro-
mising biomarkers in decomposing tumor-infiltrating immune
cells using bulk RNA-seq data. We also construct the circSC
online platform for exploring circRNAs expression at the single-
cell level, which provides unique and useful resources for the
circRNA community.

Results
Large-scale single-cell investigation reveals circRNAs with high
cellular specificity. To elucidate the cellular architecture of cir-
cRNAs, we collected public full-length scRNA-seq datasets from
171 studies involving 58 different human and mouse tissues or
cell types (Fig. 1a and Supplementary Data 1). Considering that
most 3’ RNA sequencing methods were unable to detect cir-
cRNAs that lack poly(A) tails, only full-length sequencing tech-
nologies including MATQ-seq16, Quartz-seq17, RamDA-seq18,

SMARTer19, Smart-seq20, Smart-seq221, SUPeR-seq10 and Tang’s
method22 were collected in our study. Then, the single-cell level
expression values of both genes and circRNAs were calculated
using a comprehensive pipeline embedding multiple state-of-art
tools (Fig. 1b). In brief, the HISAT223 and StringTie24 pipeline
were used to generate the gene expression matrix, and the quality
control step was utilized to filter high-confidence cells using the
Scater25 package. To eliminate the batch effect across different
studies, the anchor-based canonical correlation analysis (CCA)
method in Seurat26 package was performed, and cells were
clustered using principal component analysis and k-nearest
neighborhood clustering. Then, cell clusters were annotated
using published results and manually curated using cell markers.
At the same time, the single-cell expression matrix of circRNAs
was obtained using the CIRI227,28 and CIRIquant29 pipeline, and
circRNAs with at least 2 supporting reads were kept for the
downstream analysis. Then, the expression level of circRNAs was
consequently normalized using gene expression profiles (see
Methods). In summary, 40,604 human and 131,533 mouse single
cells passed quality control (approximate 1000 cells per experi-
ments), and circRNAs in these cells were detected for down-
stream analysis.

To evaluate the reliability of circRNA detection, all circRNAs
in single-cell data were comprehensively compared against our
previous database circAtlas v2.07 or the integration of other 10
bulk RNA-seq based circRNA databases (Supplementary Table 1).
Considering that only the circAtlas database provides the
assembled full-length sequence and conservation score of
reported circRNAs30,31, the circRNA set obtained from the
circAtlas database was analyzed separately. As shown in Fig. 1c, a
total of 354,390 circRNAs were detected in the scRNA-seq cohort,
where 76,824 (21.67%) circRNAs can be simultaneously detected
in all three circRNA sets (Supplementary Fig. 1a, b). In summary,
32.43% of circRNAs were also present in these bulk RNA-seq
databases, while the remaining 67.57% of the circRNAs were
uniquely detected in single-cell data. Notably, circRNAs that were
uniquely detected in circAtlas have significantly lower expression
levels (measured by counts per million, CPM) and shorter lengths
than those shared in both circAtlas and single-cell datasets
(Fig. 1d, e), indicating that scRNA-seq can effectively capture
most high-abundance circRNAs. Besides, these shared circRNAs
exhibited high tissue specificity measured by MCS score
according to our previously described method7; 48.9% of these
overlap circRNAs were conserved across more than two species
(MCS score ≥2), demonstrating the high reliability of our
identified circRNAs (Fig. 1f).

For all circRNAs detected in the scRNA-seq datasets, a positive
correlation (R= 0.53) between the number of expressing cells and
their mean expression level were detected (Fig. 1g and
Supplementary Fig. 1c), and several highly-expressed circRNAs
like mmu-Cdr1_0001, mmu-Tulp4_0006, and hsa-RIMS1_0021
were also reported in previous studies32–34, which further
supported the circRNA identification results. Meanwhile, cir-
cRNAs that were uniquely detected in scRNA-seq data were
generally expressed in a lower number of cells (Fig. 1h, p < 0.001,
Wilcoxon rank-sum test) but have similar expression levels
compared to circRNAs validated by other databases (Fig. 1i,
p= 0.09, Wilcoxon rank-sum test), suggesting the high cell-
specific expression of these circRNAs. Specifically, ~90% of
scRNA-seq specific circRNAs were expressed in less than 10 cells
in both human and mouse samples, which makes it almost
impossible to be detected using bulk RNA-seq techniques (Fig. 1j
and Supplementary Fig. 1d). Taken together, these results
indicated the high sensitivity and reliability of full-length
scRNA-seq to reveal circRNAs with high cell specificity, while
most of which could be falsely neglected due to the relatively
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Fig. 1 Discovering circRNAs from large-scale full-length single-cell RNA-seq datasets. a The total number of cells and circRNAs detected in the collected
scRNA-seq datasets. b Workflow of scRNA-seq data integration and circRNA detection (see Methods). c Overlap of circRNAs detected in the scRNA-seq
datasets, circAtlas database, and the integration of other 10 bulk RNA-seq based databases. d The average expression levels (counts per million, CPM) of
circRNAs in the circAtlas database. Colors represent circRNAs that were uniquely detected in circAtlas (purple, n= 730,657) or simultaneously detected
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the range of 1.5x interquantile range (IQR) distance from the box limits. ****P < 0.0001, Wilcoxon rank-sum test (two-sided). Source data are provided as a
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lower proportion of expressing cells in traditional bulk RNA-seq
samples. Additionally, these scRNA-seq specific circRNAs were
also widely expressed in cells that have more than 10 back-spliced
junction (BSJ) reads (Fig.1k). Despite the small number of
expressing cells, these circRNAs were also originated from exons
that have higher conservation scores (Supplementary Fig. 1e, f).
Besides, a proportion of 16.0% human and 5.0% mouse scRNA-
seq specific circRNAs also exhibited conservative expression in
more than two species (Supplementary Fig. 1g), which suggested
that a large fraction of conserved circRNAs with potential
biological functions remain undiscovered in the previous bulk
RNA-seq datasets.

Brain circRNAs display cell-specific expression patterns in
inhibitory and excitatory neurons. Previous studies have shown
that circRNAs are widely expressed across eukaryotic tissues, and
especially enriched in mammalian brains8,9,35,36. However, the
cellular expression pattern of circRNAs in this tissue has never
been examined. To rigorously investigate the cellular landscape of
circRNAs, we first collected and analyzed 18 studies of mouse
brain samples, which also constitute the largest cohort among our
collected datasets. All human and brain cells were analyzed and
integrated as described above. A total of 41,911 cells were divided
into 14 clusters, and 64,311 circRNAs were detected (Fig. 2a). As
shown in Fig. 2b, most cells were clustered into GABAergic
neurons (GABA), glutamatergic neurons (GLUT), and microglia
cells (MG). Despite the similar number of cells in these clusters,
circRNAs tend to be specifically enriched in GABAergic and
glutamatergic neurons. Although the top 10 most abundant cir-
cRNAs have shown conserved expression across different cell
types, cell-type-specific circRNAs exhibited disparate patterns
between neurons, immune cells, glial cells, and vascular cells,
demonstrating the high cell specificity of these circRNAs. For
experimental validation of these circRNAs, RT-PCR of 12 cell-
type-specific circRNAs that expressed in less than 10 cells were
performed using outward primers targeting the BSJ region, and
the back-spliced junction sequence of these circRNAs were suc-
cessfully validated using Sanger sequencing (Supplementary
Table 2). Then, the widely used Tau method37 was implemented
to measure the cellular specificity of circRNAs, and genes were
divided into circRNA hosting genes and other genes for further
comparison. As shown in Fig. 2c, circRNAs exhibited a sig-
nificantly higher specificity than both groups of genes. Mean-
while, the circRNA hosting genes also showed significantly lower
specificity than other non-hosting genes, as that circRNAs tend to
be originated from genes with higher expression levels (Supple-
mentary Fig. 2a), which resulted in a relatively lower cell speci-
ficity. For instance, 10 of 12 circRNAs from the mouse Taf1 gene
were specifically detected in neuron cells, and a distinct expres-
sion pattern was also observed in GABAergic and glutamatergic
neurons (Fig. 2d).

To further validate the circRNAs expression landscape in the
human brain, four scRNA-seq datasets (GSE67835, GSE71315,
GSE75140, and GSE125288) of healthy human brains were also
analyzed, and the enriched expression of circRNAs in GABAergic
and glutamatergic neurons was observed accordingly (Supple-
mentary Fig. 2b, c). Afterward, the orthologs between human and
mouse circRNAs were extracted from the circAtlas database. As
shown in Fig. 2e, circRNAs with higher expression levels were
more likely to be conserved in both species, whereas species-
specific circRNAs tend to have lower expression levels. Consistent
with previous results, the majority of these conserved circRNAs
were highly enriched in GABAergic and glutamatergic neurons,
and a proportion of circRNAs were also exhibited to be generally
expressed in all types of cells (Fig. 2f). As mentioned in previous

studies, the expression level of circRNAs is largely correlated to
the activity of RNA-binding proteins (RBP)9,38,39. Thus, to
explain these patterns, the Spearman correlation coefficient
between all circRNAs and circRNA hosting genes or RBPs in
all cells was calculated for comparison. The correlation coefficient
between circRNAs and RBPs was significantly higher (p < 0.001)
than that of hosting genes (Fig. 2g). In particular, the
polypyrimidine tract binding proteins PTBP1 (R= 0.76) and
PTBP2 (R= 0.66) exhibited a high correlation against circRNAs,
where a relatively low level of PTBP1 and a high level of PTBP2
were observed in both GABAergic and glutamatergic neurons.
Our previous study has shown that the decrease of PTBP1 activity
could result in a dramatic outburst of circRNAs29, which can
partially explain the enormous number of neuron-specific
circRNAs detected in the single-cell cohort. As expected, the
circRNA expression level (e.g., circCdr1) and circular-to-linear
ratio were highly correlated with the downregulation of PTBP1
and the upregulation of its compensator PTBP2 in most cell types
(Fig. 2h). Furthermore, only a small proportion of overlap
between circRNA-generating loci in GABAergic and glutamater-
gic neurons was observed (Supplementary Fig. 2d), which
indicated the cell-specific expression in these two types of
neurons. The gene ontology analysis also demonstrated the
enrichment of excitatory synapse and glutamate decarboxylase
complex in GABAergic- and glutamatergic-specific circRNAs,
which is consistent with the biological characteristic of GABAer-
gic and glutamatergic neurons, respectively (Supplementary
Fig. 2h). Taken together, these results demonstrate the highly
cellular-specific expression landscape of circRNAs, and further
reveal the complex association between circRNA biogenesis and
RBP activity, especially in these inhibitory and excitatory
neurons.

The dynamic expression of maternal and zygotic circRNAs
during early embryo development. Single-cell RNA sequencing
has enabled the study of gene heterogeneity in embryonic
development stages40, but the change of circRNA expression
pattern during this process still needs further exploration. Here,
we analyzed 11 studies of human and mouse embryos containing
samples from 16 different stages covering oocytes to early buds
(Fig. 3a). A total of 41,041 and 24,818 circRNAs were detected in
human and mouse embryonic cells, respectively. To reveal the
dynamic changes between circRNAs in the embryo developing
process, the Pearson correlation between circRNA expression
levels in different stages was calculated. As shown in Fig. 3b, a
high correlation between cells in the first 3-4 days after fertili-
zation was observed, which is consistent with the maternal effect
of circRNAs during early embryonic development10,41. Moreover,
cells from blastocyst to implanted embryos exhibited a different
expression pattern of circRNAs, suggesting the expression of
zygotic circRNAs after the blastocyst stage. Besides, an increase in
both the circRNA diversity and junction ratio of detected cir-
cRNAs within developing stages were observed on both human
and mouse samples, which also verified the accumulation of these
zygotic circRNAs in the embryo developing process (Fig. 3c and
Supplementary Fig. 3a). Considering that only a relatively small
number of cells were collected in the human datasets, only mouse
embryos were included in the downstream analysis. To eliminate
the randomness effect, the expression pattern of circRNAs that
can be detected in more than two stages was plotted in Fig. 3d. As
expected, the gradual degradation of maternal circRNAs was
observed, and most other circRNAs exhibited a stage-specific
expression profile. To further investigate the dynamic expression
changes of circRNAs during the maternal-to-zygotic transition,
samples were divided into four-time points including totipotent
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blastomeres (TB), first lineage (TE/ICM), second lineage (EPI/
PE), and implanted embryo, reflecting the changes of totipotency
and lineage segregation in the development process. Subse-
quently, genes and circRNAs were clustered into 5 groups using a
noise-robust clustering method42. As shown in Fig. 3e, circRNAs
and genes in cluster 1 and 2 were highly expressed in the early TB
stage, then continuously decreased with the embryo development.
In contrast, cluster 3 to 5 of circRNAs represent zygotic circRNAs
that were specifically expressed after fertilization. To determine
whether the activation of zygotic circRNAs were byproducts of

host gene expression, the correspondence between circRNAs and
their host genes was examined. Notably, a large fraction of zygotic
circRNAs (67.50% in cluster 3, 69.2% in cluster 4, and 83.9% in
cluster 5) were generated from maternally expressed genes, which
suggested the unique biogenesis mechanism of these zygotic cir-
cRNAs during embryo development (Fig. 3h).

To further investigate the difference between the zygotic gene
and circRNA activation process, the composition of reads from
genes and circRNAs in each cluster was calculated. Similarly, only
circRNAs that simultaneously expressed in more than one of four

Va
sc

ul
ar

Im
m

un
e

G
lia

N
on

-n
eu

ro
ns

N
eu

ro
ns

#Cells #circRNAs
Top 10 circRNAs Cell-type specific circRNAs

MG

OLG

PC
EC

ASC

VSMCTC

OPC

NPC

MAC VLMC

0 15000 300000 15000t-SNE 1

t-S
N

E 
2 GABA

GLUT
MSN

0.0

0.5

1.0

RBPHost gene

C
or

re
la

tio
n 

co
ef

fic
ie

nt
GABA

cir
cR

NA

Hos
t g

en
e

0.0

0.5

1.0

Pr
op

ot
io

n 
of

 c
el

ls

0.2

0.4

0.6

0.8

C
el

lu
la

r s
pe

ci
fic

ity

Othe
r g

en
e

0

5

G
en

e 
C

PM
ci

rc
R

N
A 

C
PM

a
b
c
d
e
f
g
h
i
j
k
l

Taf1 (ENSMUSG00000031314)

101532734

ChrX

101601789
a b

c d
e

f
g

h
i j

k l

Mouse Human

Rank of circRNAs
0  1000 2000300060009000 0

0

15

30

ci
rc

R
N

A 
C

PM

Orthologs Species-specific

GLU
T

GABA
GLU

T
GABA

GLU
T

MG
OLGPC EC

ASC
VSMCTC

OPC
NPC

MAC
VLM

C
MSN

O
rth

ol
og

ou
s 

ci
rc

R
N

As

Mouse Human CPM

0

2.5

****
P<2.22e-16

****

0

1

Sc
al

ed
sc

or
e

C
or

r
0

1

RBP circRNA

C
el

l t
yp

es
PTBP1

PTBP2

cir
cR

NA

Lc
-ra

tio

cir
cC

dr1

P<2.22e-16

Fig. 2 Enriched expression of circRNAs in inhibitory and excitatory neurons. a The t-SNE plot of all 41,911 brain single cells, colored by annotated cell
types. GABA, GABAergic neurons. GLUT, glutamatergic neurons. MG, microglia cells. b Panels from left to right: the number of cells; the number of
identified circRNAs; expression values of top 10 highly expressed circRNAs; expressed values of cell-type-specific circRNAs in each cluster. Sizes of points
indicate the mean expression values measured by CPM. c The cellular specificity of circRNAs (n= 74,678), circRNA hosting genes (n= 13,467), and non-
hosting genes (n= 39,253). Upper, the cell specificity was measured by the Tau method. Bottom, the proportion of cell types in all expressing cells.
d Example of 12 circRNAs generated from the Taf1 loci. Upper, schematic view of gene structure and back-splicing events (grey lines). Bottom, mean
expression levels of circRNA isoforms and Taf1 gene in each cell cluster. e Orthologues between human and mouse circRNAs. All human and circRNAs
were ranked according to their expression levels, and the y axis represents the average CPM of circRNAs in all expressing cells. Red, circRNAs that are
conservatively expressed in human and mouse. Grey, circRNAs uniquely detected in each species. f Expression heatmap of 1,048 orthologous circRNAs in
human and mouse cells. Filled colors represent the mean CPM of circRNAs in each cluster. g The Spearman correlation between circRNAs and host genes
(n= 13,467) or RBPs (n= 2995). h Cell-type-specific expression of RBPs and circRNAs. Filled colors indicate the normalized value of gene or circRNA
expression values in each cell type. All center lines in the box plots and violin plots indicate the median values, and box limits indicate the upper and lower
quartiles of plotted values. The upper and lower whiskers indicate the largest and smallest values within the range of 1.5x IQR from the box limits.
***P < 0.001, Wilcoxon rank-sum test (two-sided). Source data are provided as a Source Data file.
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4,090 / 9,160 / 2,573 / 2,784 circRNAs) and mouse (n= 1928 / 2579 / 10,998 / 6789 / 3174 / 3262 / 62 / 1142 / 1306 / 2279 / 2997 / 7300 / 805 /
1079 / 1300 circRNAs) embryos. The y axis represents the circular-to-linear ratio measured as the expression level of circRNAs divided by the host gene
expression values. The center lines indicate the median values, and box limits indicate the upper and lower quartiles of plotted values. The upper and lower
whiskers indicate the largest and smallest values within the range of 1.5-fold IQR from the box limits. d Heatmap of circRNAs (expressed in � 2 stages)
expression. Filled colors represent the average CPM of circRNAs in each stage, and all stages were divided into four time points according to the cell
differentiation and lineage segregation state. e Fuzzy clustering of circRNAs expression data in four time points. Purple or red colored lines correspond to
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expression level of circRNAs. i Gene ontology enrichment for the maternal and zygotic circRNAs. Colors indicate q-value computed using two-sided Fisher
exact test and adjusted using Benjamini-Hochberg method for multiple hypotheses testing. Source data are provided as a Source Data file.
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stages were included. In contrast to the gentle increase of
zygotic gene reads during the developing stages (Supplementary
Fig. 3b), the dramatic outbreak of zygotic circRNAs after
8-cell stages was observed in Fig. 3g, providing convincing
evidence of maternal circRNA degradation and zygotic circRNA
activation. For instance, the different expression patterns of two
zygotic and three maternal circRNAs were plotted. As shown in
Fig. 3h, the mmu-Erdr1_0001 and mmu-Erdr1_0002 derived
from erythroid differentiation regulator-1 (Erdr1), a secreted
factor that regulates cell survival, apoptosis43,44, were highly
expressed in the implanted embryo. Meanwhile, the Erdr1 gene
was lowly expressed in cells from all stages, suggesting that the
possible biological function of mmu-Erdr1_0001 and mmu-
Erdr1_0002 in the development of the implanted embryo
(Supplementary Fig. 3c). Moreover, mmu-Pola1_0001, mmu-
C130026I21Rik_0001, and mmu-Ndrg3_0005 also exhibited a
stronger maternal effect compared to their host genes. Thus, the
highly specific expression of these circRNAs demonstrated that
circRNAs undergo a more significant maternal-to-zygotic transi-
tion process compared to their linear counterparts. Finally, the
gene ontology enrichment analysis was performed on the parental
gene of maternal and zygotic circRNAs. As shown in Fig. 3i,
microtubule-based movement and cilium assembly were enriched
in the maternal circRNAs, while splicing-related processes were
enriched in the zygotic circRNAs, which is consistent with the
polarity establishment and embryonic genome activation in
developing embryos. Collectively, these results demonstrated the
highly cellular specific expression profile of circRNAs and the
substantial activation of zygotic circRNAs in embryo develop-
ment, which also suggested the important role of these maternal
and zygotic circRNAs during this process.

Inter- and intra-tumor circRNA heterogeneity in human breast
cancer metastasis. Recent studies have demonstrated the emer-
ging role of circRNAs in regulating cancer progression and
proliferation45–48. However, the comprehensive landscape of
circRNA expression at the single-cell level has not been thor-
oughly examined. To extensively profile circRNAs across breast
cancer tumorigenesis, a total of 26 primary and metastasis tumor
scRNA-seq samples from 20 breast invasive carcinoma (BRCA)
patients with different luminal stages including 19 TNBC, 3
HER2 negative, 2 luminal A, and 2 luminal B samples were
investigated49–51. Firstly, all cells from 20 patients were integrated
and analyzed as described above, and CopyKAT52 was performed
to identify normal cells and tumor cells with copy number var-
iations (Fig. 4a). As shown in Fig. 4b, more than 49.88% and
67.28% of normal and carcinoma populations were identified as
epithelial cells. Then, the difference of circRNA expression levels
between normal and carcinoma populations was further investi-
gated (Fig. 4b and Supplementary Fig. 4a). Consistent with pre-
vious studies, tumor cells with aneuploid rearrangement exhibited
significantly lower expression of circRNAs in both metastasis and
primary tumors (Fig. 4c), and the same pattern was also observed
in most identified cell types (Fig. 4d). In particular, the expression
of several well-known circRNAs was plotted in Supplementary
Fig. 4b, whereas cancer-related circRNAs like hsa-CDYL_0005,
has-BARD1_0006, hsa-HIPK3_0001, and hsa-FAM120A_0006
can be successfully detected in both normal and carcinoma
cells53–56. Besides, a cell-specific expression pattern of circRNA
isoforms derived from BARD1 and KRD36C gene were also
plotted, indicating the sparse expression of circRNAs in scRNA-
seq data (Supplementary Fig. 4c). Interestingly, both normal and
carcinoma cells from low-grade (luminal A, luminal B, and
HER2-negative) tumors with better prognosis tended to express
more circRNA than high-grade triple-negative breast carcinoma

(TNBC) cells, indicating the less accumulation of circRNAs in
TNBC cells with faster progression rate.

Given the dominant number of epithelial cells in this cohort
and the important role of epithelial to mesenchymal transition
(EMT) in tumor invasion and metastasis, the circRNA dynamic
during EMT was further investigated. Firstly, all epithelial cells
were clustered, and trajectory inference analysis was performed to
reveal the dynamic cell differentiation process (Fig. 4f). To better
explore the transition state of individual cells, the EMT score was
consequently calculated using a reported method57. As shown in
Fig. 4g, the cell trajectory results generally fitted the increase of
EMT score accordingly. Then, gene ontology (GO) enrichment
analysis was performed on each cell cluster. As expected,
epithelial cells proliferation processes were enriched in clusters
with lower EMT scores, while cell migration and mesenchymal
related processes were enriched in the clusters with higher EMT
levels. Furthermore, the proportion of carcinoma cells in each
cluster was calculated, and a positive correlation between tumor
cell percentage and EMT score was observed accordingly (Fig. 4h).
This result can be explained as the EMT score was calculated
using a cancer specific EMT signature matrix. Interestingly, after
the intermediate EMT state (branch point 1 in Fig. 4f), epithelial
cells were differentiated into two branches. The upper branch,
which mainly consisted of cluster 10-12, had a significantly more
proportion of carcinoma cells and a higher EMT score compared
to the other branch that was made up of more normal cells.
Finally, the circRNA expression level in each cluster was
calculated (Supplementary Fig. 4d). With the transition from
the epithelial cell (cluster 1-2) to the intermediate EMT state
(cluster 3-5), the average expression level of circRNA increased
accordingly (Fig. 4i), which is consistent with the global activation
of circRNAs during EMT38. However, in the later stage of EMT,
an unexpected decrease in circRNA expression was observed. In
particular, the circRNA expression level in carcinoma cells was
decreased in the mesenchymal stage (cluster 9-12) compared to
that of normal cells. The difference between normal and
carcinoma cells in the mesenchymal stage suggested the
weakened accumulation effect of circRNAs with tumor cell
proliferation in the later stage of EMT. Finally, the heterogeneity
of circRNA between patients was investigated. As shown in
Supplementary Fig. 4e, the metastasis and primary tumor from
one patient exhibited similar expression patterns, and a large
variation in cells from different patients could be observed. Taken
together, we profiled the detailed profile of circRNA expression
during EMT, revealing the complex inter- and intra-tumor
heterogeneity of circRNAs between primary and metastasis
samples from breast cancer patients.

Cell-specific circRNAs providing insights into optimal cell type
discrimination. In previous studies, many computational meth-
ods have been developed to explore the heterogeneity of tumor-
infiltrating immune cells in bulk RNA-seq datasets using cell
type-specific marker genes58–61. Based on the high cellular spe-
cificity of circRNAs, we further speculated the possibility of using
circRNAs as biomarkers to improve the performance of cell type
decomposition. To construct a high-quality circRNA signature
matrix, the scRNA-seq cohort from 17 different human and
mouse tissues along with cognate cancer samples were investi-
gated (Fig. 5a). Then, we also collected 446 and 777 bulk normal
and tumor RNA-seq datasets from the circAtlas7 and
MiOncoCirc62 databases to validate the performance of circRNA
in cell-type deconvolution. In brief, all scRNA-seq samples were
analyzed using the Seurat26 pipeline (see Methods). Next, cell
composition in human and mouse datasets were predicted using
marker genes from published databases63,64 and literature, and
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then curated using SingleR65 prediction results. Firstly, all cir-
cRNAs were divided into five groups according to the expression
pattern in different cell types and tissues (Fig. 5b). In summary, a
total of 12,625 circRNAs across all samples were only detected in
one cell type, of which 6,623 (52.5%) were also reported in the
bulk RNA-seq based resource (Supplementary Fig. 5a). As shown
in Supplementary Fig. 5b, these circRNAs were mutually detected
in a variety of tissues and samples, indicating the potential of
these circRNAs as biomarkers for cell-type classification. Besides,
3.24% of circRNAs were detected in multiple cell types within a
single tissue, which also validated the tissue-specific expression
pattern of these circRNAs. About 50% of circRNAs exhibited a

constitutive expression in more than 50% of cells or expressed in
multiple cell types, suggesting the “housekeeping” role of these
circRNAs in specific tissues or cell types. Meanwhile, the majority
of circRNAs were “lowly expressed” in only one cell, which is
consistent with the randomized biogenesis of most circRNAs
reported in a recent study66. Afterward, the cell-type-specific
architecture of circRNAs in human and mouse samples was
summarized, and the relationship of shared circRNAs was plotted
in Fig. 5c. Similar to the gene expression landscape reported in
the previous study67, circRNAs also exhibited distinct expression
clusters between cell types with different functions. Specifically,
several orthologous cell-type-specific circRNAs between human
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and mouse cells were also detected, implying the conserved bio-
logical function of these circRNA subsets.

To validate the potential of circRNA serving as cell type
biomarkers, the overlap between expressed circRNAs in different
cell types and bulk RNA-seq datasets were further calculated. As
shown in Fig. 5d, circRNA detected in bulk RNA-seq data
exhibited a highly specific overlap with cellular expressed
circRNAs. For instance, 39.36% of circRNAs detected in
GABAergic neurons can be simultaneously detected in normal
brain samples, and the overlap of circRNAs in human and brain
samples was also highly enriched in cell types identified in the
previous results. To compare the performance of circRNAs and
genes as cellular biomarkers in profiling tumor-infiltrating cells,
only cell types that were annotated in human tumor samples were
included in the downstream analysis. Afterward, the cell-type
specificity of all expressed circRNAs, marker genes from public
databases, and 1,000 randomly selected genes were calculated.
Notably, the cell type specificity of circRNAs was significantly
higher than that of marker genes and random control genes,
which further indicated the ability of circRNAs to serve as cell-
type biomarkers (Fig. 5e). Then, the composition of tumor-
infiltrating immune cells in cancer-related bulk RNA-seq datasets
was calculated using CIBERSORT68 with marker genes from the
LM22 gene set and cell-type-specific circRNAs from immune
cells, respectively (Fig. 5f). The performance of cell-type
decomposition was assessed by log-scale root-mean-square error
(RMSE) provided in the CIBERSORT results, which represent the
bias between original and imputed marker gene expression
values. As shown in Fig. 5g, the deconvolution results using
circRNAs have significantly lower RMSE values (p= 0.015,
Wilcoxon test), which represents better accuracy in estimating
cell compositions. These results demonstrated the applicability of
circRNAs serves as better cell-type biomarkers in exploring the
heterogeneity of tumor-infiltrating immune cells, which also
suggested the important biological roles of these circRNAs in
certain cell types.

To this end, we further integrated the cellular architecture of
circRNAs and the circRNA signature matrix in immune cells into
a web server called the circRNA single-cell portal (circSC). The
circSC portal provides comprehensive information including
cellular expression profile, differentially expressed results, and the
catalogue of circRNAs identified in an enormous number of
human and mouse cells (Fig. 6). The circSC portal has been
integrated into circAtlas as an individual module (http://circatlas.
biols.ac.cn/), providing convenient browsing and searching
functions of both the single-cell and bulk RNA-seq expression

pattern of circRNAs of interest. Thus, we believe that our
database can serve as an important resource for exploring the
dynamic changes of circRNAs in embryo development, tissue
differentiation, and cancer biogenesis process, and it provides a
unique and useful platform for the circRNA community.

Discussion
In this study, we reported the single-cell landscape of circRNAs
using a large-scale full-length scRNA-seq cohort. We identified a
total of 139,643 and 214,747 circRNAs in human and mouse
single cells, respectively. We also validated detected circRNAs
using public resources based on bulk RNA-seq data and dis-
covered 216,602 high-confidence circRNAs (≥ 5 supporting
reads) that were uniquely detected in the single-cell cohort. Based
on these datasets, we rigorously investigated the single-cell
expression pattern of circRNAs in different tissues, developing
stages, and cell states. Furthermore, we revealed the relatively
higher cell specificity of circRNAs compared to the linear mRNAs
and demonstrated the promising role of circRNAs in improving
the performance of cell composition estimation from bulk RNA-
seq datasets.

Given that circRNAs do not have poly(A) structures like their
cognate linear RNAs, the most widely used oligo(dT) priming
methods could not detect circRNAs effectively. However, recent
studies have demonstrated the circRNAs could also be detected at
low levels in poly(A) enriched libraries14, which further validated
the feasibility of studying the single-cell circRNA landscape using
the tremendous number of public scRNA-seq datasets. As most
circRNAs are derived from exonic regions, the identification of
circRNAs largely relies on the detection of back-splicing junction
sequences. Thus, most 3’ end sequencing methods like Drop-seq
and 10X Genomics Chromium Single Cell 3’ method are not
likely to generate fragments spanning the junction site and thus
are not suitable for circRNA detection. Therefore, only datasets
generated from 8 full-length scRNA-seq methods were collected
in our study, which provided the basis for exploring circRNA
expression with an unprecedented resolution.

The large-scale integration of scRNA-seq datasets provides an
opportunity to reveal the dynamic changes of circRNAs in dif-
ferent cell types or developing stages. In this study, we found that
circRNAs were highly enriched in neurons compared to other
cells in brain samples. The inhibitory and excitatory neurons also
exhibited cell-specific circRNA expression patterns that were
correlated with RBP expression levels, suggesting the highly
specific expression of circRNAs under the regulation of RBP in
diverse cell types. We also explored the dynamic changes of

Fig. 4 Heterogeneity of circRNAs between normal and tumor cells in breast cancer patients. a Schema of data integration and tumor cell identification.
All cells were divided into normal and tumor cells using CopyKAT, then cells were integrated and clustered based on the expression profiles. b The cell
number (left column), cell composition (middle column), and the mean number of circRNAs in each cell (right column). Samples were divided into normal
and tumor cells according to the copy number variation. c Log-scaled circRNA expression values in normal and tumor cells from the primary (breast,
n= 4687/8246 cells) and metastasis tumors (lymph, n= 1679/1465 cells and lung n= 614/1770 cells). Grey and red lines indicate normal and tumor
cells, respectively. d Log-scaled circRNA expression values in each cell type, grey and red color indicates normal (n= 660 / 28 / 660 / 885 / 3339 / 140 /
205 / 970 / 93) and tumor (n= 29 / 2 / 108 / 36 / 9,630 / 185 / 792 / 533 / 167) cells. The error bars indicate ± SD of plotted values. e Log-scaled
circRNA expression values divided by molecular subtypes. The x axis indicates molecular subtypes ranked from best to worst prognosis. Filled colors
indicate normal (n= 518 / 1393 / 536 / 4533) and tumor (n= 852 / 1081 / 2926 / 6622) cells, respectively. The red points indicate the mean value of
plotted data. f Trajectory reconstruction of all epithelial cells reveals two branches in tumor progression, colored by cluster results from the t-SNE plot.
g GO enrichment analysis of 12 cell clusters (n= 149 / 239 / 62 / 143 / 89 / 165 / 209 / 200 / 119 / 183 / 159 / 126 cells) ordered by the EMT score. All
clusters were divided into four stages according to the enriched biological processes. h The distribution of tumor and normal cells in t-SNE and trajectory
projection plots (left), and cell composition in each cluster (right). i Change of circRNAs expression profiles in EMT cluster. The y axis represents log-
scaled expression values of circRNAs, and size of points indicates the number of expressing cells. All center lines in the box plots and violin plots indicate
the median values, and box limits indicate the upper and lower quartiles of plotted values. The upper and lower whiskers indicate the largest and smallest
values within the range of 1.5x IQR from the box limits. **P < 0.01, ****P < 0.0001, Wilcoxon rank-sum test (two-sided). Source data are provided as a
Source Data file.
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circRNAs during the human and mouse embryo development
process. Aside from the maternal effect of circRNAs reported in
previous studies10,41, we further demonstrated the dramatic
increase of circRNA expression during late MZT stages, which
indicated the strong activation of zygotic circRNAs in pre-
implantation embryos.

The circRNA expression in tumor samples has been extensively
elucidated using bulk RNA-seq datasets. However, the results are
often affected by the cancer-to-normal cell ratios among the
studied tumor specimens, where the difference of tumor purity
between samples could result in biased or false-positive results. In
contrast to the well-known role of ciRS-7 as an oncogene69, a
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recent study has experimentally validated that the expression of
the ciRS-7 is absent in stromal tumor cells but highly expressed in
stromal cells within tumors12. Thus, the investigation of cir-
cRNAs at the single-cell level has become an emerging aspect in
studying circRNA function in tumor genesis and metastasis. In
this study, we comprehensively investigated the expression
landscape circRNAs in 20 breast carcinoma patients and
demonstrated the heterogeneity of circRNAs between lesions and
cell types. We utilized the EMT-score to measure the differ-
entiation state of cells during the EMT process and further
revealed the distinct changing pattern of normal and carcinoma
cells. Finally, we also investigated the intertumoral heterogeneity
of circRNAs between patients with different lineage stages. The
circRNAs exhibited a similar expression pattern from primary
and metastasis tumors from the same patient but have disparate
expression patterns between patients. These high heterogeneities

of circRNAs suggested the importance of single-cell level inves-
tigation of circRNAs, which provides an important basis to
understand the role of circRNAs during tumorigenesis.

Our previous studies have revealed the highly specific expres-
sion of circRNAs in different tissues and species7,9,70,71. Here, we
explored the highly cell-specific expression of circRNAs at single-
cell resolution and identified 12,625 circRNAs that were only
detected in one cell type. Moreover, we generated the circRNA
reference of 8 immune cell types and validated that the cell
composition deconvolution results using circRNAs as cell-type
signatures have better accuracy compared to that using gene
markers only, which suggested the emerging role of these cir-
cRNAs as promising biomarkers in profiling tumor-infiltrating
immune cells. This study further explores the cellular landscape
and reveals high cell specificity of circRNAs in human and mouse
samples, which largely expands our understanding of circRNA

Fig. 5 Exploring cell-type-specific circRNAs as biomarkers for cell composition deconvolution. a Statistics of collected bulk RNA-seq and scRNA-seq
datasets. b The number of cell-type enriched, tissue enriched, group enriched, general enriched, and lowly expressed circRNAs in each tissue. c The
network plot showing the overlap of circRNAs expressed in each cell type. Only cell type enriched, tissue enriched, and group expressed circRNAs were
included. Cell type nodes were clustered by their function and origin and annotated with different background colors. d The number of circRNAs detected
in different cell types and bulk RNA-seq datasets. The x and y axis represents bulk RNA-seq and cell type in scRNA-seq data, respectively, and the size of
points indicates the number of circRNAs simultaneously detected in both bulk and single-cell RNA-seq data. e The cell-type specificity of circRNAs, marker
genes, and 1000 randomly selected genes. f Decomposing tumor-infiltrating immune cells using CIBERSORT with the LM22 gene set and marker circRNAs
that are highly expressed (�3 fold higher than all other cell types) in each cell type. Both circRNA- and gene-based deconvolution results were integrated
to the 10 immune cell types identified in the scRNA-seq cohort. g Performance of cell type decomposition using marker circRNAs and genes (n= 879
independent bulk RNA-seq samples), respectively. The y axis represents the root-mean-squared error (RMSE) by CIBERSORT, which indicates the
accuracy of the deconvolution result. All center lines in the box plots indicate the median values, and box limits indicate the upper and lower quartiles of
plotted values. The upper and lower whiskers indicate the largest and smallest values within the range of 1.5x IQR from the box limits. *P < 0.05, Wilcoxon
rank-sum test (two-sided). Source data are provided as a Source Data file.

Fig. 6 The construction and functionalities of the online portal circSC. circSC consists of the cellular expression profiles of 354,390 circRNAs detected
from 172,137 single cells, covering 58 cell types and tissues. circSC provides an intuitive interface for users to browse, search, and visualize the expression
of circRNAs in various studies and cell types. It also integrates differential expression analysis between different cell types and the intra- and inter-
heterogeneity of circRNAs between tumor patients. The circRNA signature matrix of tumor-infiltrating immune cells can be directly accessed, and users
can input circRNA expression profiles from bulk RNA-seq data for deconvolution analysis. The anatogram is plotted using gganatogram86.
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biogenesis during complex biological processes. Therefore, we
developed the circSC database to investigate the circRNA in
single-cell resolution, which will provide a useful platform for the
circRNA community. Nevertheless, the construction of the full
panorama of circRNAs is still limited by the low circRNA capture
efficiency in state-of-art scRNA-seq methods, and the perfor-
mance of cell-type decomposition can also be affected by the
relatively low expression of these cell-type specific circRNAs in
bulk RNA-seq samples. At the same time, recent nanopore
sequencing based strategies like isoCirc72 and CIRI-long73,74 have
been proved to be able to capture lowly expressed circRNAs in
bulk RNA-seq libraries with high efficiency. However, further
comparison demonstrates these methods still have inadequate
capacity in detecting cell-type specific circRNAs (Supplementary
Fig. 6). Taken together, our study has demonstrated the highly
specific expression of circRNAs at an unprecedent resolution,
which suggests the emerging importance of developing further
single-cell or spatial level sequencing technologies specifically for
detecting circRNAs.

Methods
Single-cell RNA-seq dataset collection. Full-length single-cell RNA sequencing
datasets were collected from publicly available resources across multiple tissues and
cell types of human and mouse samples. Raw sequencing data were downloaded from
the Single Cell Expression Atlas (https://ebi.ac.uk/gxa/sc/home) and the Gene
Expression Omnibus (https://ncbi.nlm.nih.gov/geo) using the SRA-Toolkit (v2.9.4).
Metadata information of these datasets was retrieved from the corresponding litera-
ture. To ensure the effective capture of circRNAs, only full-length and high-resolution
single-cell transcriptome sequencing methods including MATQ-seq16, Quartz-seq17,
RamDA-seq18, SMARTer19, Smart-seq20, Smart-seq221, SUPeR-seq10, and Tang’s
method22 were included. The detailed information of study accession number and cell
numbers of the collected cohort was provided in the Supplementary Data 1.

Single-cell RNA-seq analysis and integration. For analysis of scRNA-seq data,
the human reference genome (GRCh38) and mouse reference genome (GRCm38)
were downloaded from the GENCODE project. Then, raw sequencing reads were
aligned using HISAT2 (v2.0.5)23, and StringTie (v1.2.4)24 was performed for gene
quantification. Next, a quality control step was implemented by Scater (v1.18.6)25

to filter high confidence cells, where the appropriate thresholds of library size, gene
expression values, mitochondrial reads, and the total amount of mRNA indicators
in each study were estimated by perCellQCMetrics function. Afterward, the outlier
cells were identified based on median-absolute-deviation (MAD) using isOutlier
function.

Then, we used Seurat (v4.0.2)26 to perform downstream analysis including
normalization, batch effect removal, dimensional reduction, clustering, and data
visualization. The anchor-based canonical correlation analysis (CCA) method in
the Seurat package was performed for dataset integration and batch effect
correction. Then, the integrated data was adopted to highly variable genes analysis,
principal component analysis (PCA), neighborhood graph, and cell type clustering
using the default parameters. Considering the inconsistency between different
datasets, the normalized expression of mRNA and circRNAs was calculated by the
size factor from integrated data performed by Scater25.

Cell type annotation. Cell clusters were annotated based on canonical cell markers
from published literature (Supplementary Table 3) and databases including
CellMarker63 and PanglaoDB64. Then, annotation results are curated using the
SingleR (v1.4.1)65 algorithm with various reference datasets (Blueprint/ENCODE,
human primary cell atlas, Novershtern hematopoietic data, Monaco immune data,
and Database of Immune Cell Expression). The curated annotation results are
determined by combining both results from our pipeline and the original studies.
The CopyKAT (v1.0.4)52 workflow is used to determine normal cells and carci-
noma cells with aneuploid rearrangement. The list of abbreviations for cell type
names is listed in Supplementary Table 4.

CircRNA detection and quantification. For circRNA analysis, we used bwa
(v0.7.12)75 for split-mapping of raw reads, then the CIRI2 (v2.0.6)27 and CIRI-
quant (v1.1)29 pipeline was performed for circRNA identification and quantifica-
tion. Then, stringent circRNAs were further filtered with a threshold of
2 supporting BSJ reads in the whole single cell dataset. The circRNA expression
levels are measured using counts per million mapped reads (CPM). To eliminate
the batch effect between different datasets, the number of supporting reads of each
circRNA is normalized using size factor from gene normalization results, and the
expression matrix at single-cell level is generated as output. Then, the circRNA
expression profile in various tissues are aggregated by summing the expression

value of circRNA in each cell. Finally, FindAllMarkers function in Seurat was used
for differential expression analysis.

Rerverse transcription PCR (RT-PCR) validation. To validate the reliability of
circRNA detection in the scRNA-seq data. Outward primers were specifically
designed to validate the back-spliced junction sequence of 12 randomly selected
cell-type specific circRNAs that were detected in less than 10 cells. For RT-PCR,
total RNA from the brain of one healthy adult mice (C57BL/6, female, 17 weeks)
was isolated using TRIzol (Invitrogen, 15596026 and 15596018), and the quality
was assessed with Qsep 100 Bio-Fragment Analyzer (BiOptic). The linear RNAs
were digested with 20 U of RNase R (Lucigen, RNR07250) in a 50 μl reaction for
30 min according to a previous study76, and ribosomal RNA was removed using
KAPA RiboErase Kit (Human/Mouse/Rat, KK8481) according to the manu-
facturer’s instructions. Here, a 2.2x RNA Clean XP (Beckman, A63987) cleanup
was performed after each step. Finally, cleaned RNA was reverse transcribed using
random primers and the Hifair® II 1st Strand cDNA Synthesis Kit (Yeasen,
11121ES60) following the manufacturer’s instruction. Then RT-PCR experiments
of 12 circRNAs were performed using Rapid Taq Master Mix (Vazyme P222)
under the following conditions: 95 °C for 3 min; 35 cycles of 95 °C for 15 s, 55 °C
for 15 s, and 72 °C for 60 s; 72 °C for 10 min. Finally, the sequences of PCR pro-
ducts were determined using Sanger sequencing. All sequences of primers and PCR
products were supplied in the Supplementray Table 2.

Trajectory analysis. For branching trajectory and pseudo-time analysis, Monocle
2 (v.2.8.2)77 was performed on scRNA-seq data to reveal the cell differentiation
state. Cluster information was extracted from the Seurat results, and high variable
genes were selected to determine the transition state or development process.

Public circRNA databases and bulk RNA-seq data. To validate the circRNAs
detected in scRNA-seq data, a total of 10 public circRNA resources, including
circAtlas (v2.0)7, circbank78, circBase5, CIRCpedia (v2)6, CircRic15, circRNADb79,
MiOncoCirc (v2.0)62, deepbase (v2.0)80, TCSD8 and CSCD81 were collected. The
circRNA coordinate was converted to the hg38/mm10 genome using liftover, and
all circRNAs were integrated for downstream analysis. The length of the full-length
assembled circRNAs in circAtlas was extracted for comparison. The bulk RNA-seq
data of normal and tumor samples were downloaded from circAtlas and MiOn-
coCirc database and analyzed using the same method described above.

Gene ontology enrichment analysis. Gene set enrichment analysis against Gene
Ontology pathways was performed by the ClusterProfiler (v4.0)82 and Enrichr83

software. The significant GO terms were filtered by a threshold of p < 0.05 values
using the modified Fisher’s exact test.

Maternal and zygotic circRNAs cluster. Hierarchical clustering in embryo
development for gene and circRNA was performed based on fuzzy c-means clus-
tering by Mfuzz (v2.50.0)42.

Cell specificity calculation. The cell specificity of gene and circRNAs was cal-
culated using the following equation:

T ¼ ∑n
i¼1 1� x̂i

� �

n� 1
; x̂i ¼

xi
max
0≤ x ≤ 1

xi
� � ð1Þ

Where xi is the average expression value of genes or circRNAs in different cells,
and n is the number of tissues or cell types.

Cell composition inference. All carcinoma cells were integrated and clustered as
described above, then the epithelial cells, fibroblast, and endothelial cells were
removed from the cluster results. The remaining cells were clustered again, and cell
clusters were annotated to different immune cell types (macrophages, monocytes,
T cells, mast cells, dendritic cells, B-cell, NK cells, neutrophils, eosinophils, and
plasma cells). The circRNA signature was then filtered using the following criteria:
(1) circRNAs expressed in at least 2 cell types; (2) circRNAs exhibited a sig-
nificantly higher expression in one cell type than the others. The LM22 gene
signature matrix was downloaded from the CIBERSORT webserver68, and cell
composition deconvolution results were aggregated to the cell types described
above. The RMSE and correlation from CIBERSORT results were used for
comparison.

Statistics & reproducibility. No statistical method was used to predetermine
sample size. No data were excluded from the analyses and all analyses were not
randomized.
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Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The cellular expression results of circRNAs reported in this study have been deposited in
the Genome Sequence Archive84, China National Center for Bioinformation under
accession number “PRJCA009653”. The RNA-seq datasets used for circRNA
identification are listed in the Supplementary Data 1. Source data have been deposited in
“zenodo [https://doi.org/10.5281/zenodo.6528434]”. All other relevant data supporting
the key findings of this study are available within the article and its Supplementary
Information files or from the corresponding author upon reasonable request. Source data
are provided with this paper.

Code availability
The analysis pipeline is available at the “circSC” module in “circAtlas [http://circatlas.
biols.ac.cn]” and in the “Github repository [https://github.com/bioinfo-biols/Code_for_
circSC]“85.
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